AppendixBNotation
ΒΆ| Symbol | Description | Location |
|---|---|---|
| \(P \vee Q\) | Disjunction of propositions | Definition 1.1.2 |
| \(P \wedge Q\) | Conjunction of propositions | Definition 1.1.2 |
| \(\neg P\) | Negation of a proposition | Definition 1.1.2 |
| \(P \implies Q\) | Conditional implication | Definition 1.2.1 |
| \(P \iff Q\) | Biconditional implication | Definition 1.2.6 |
| \(\forall\) | Universal quantifier | Definition 1.3.1 |
| \(\exists\) | Existential quantifier | Definition 1.3.1 |
| \(\exists !\) | Unique existential quantifier | Definition 1.3.3 |
| \(\gcd(a,b)\) | greatest common divisor of two integers | Definition 1.7.2 |
| \(\subseteq\) | subset | Definition 2.1.3 |
| \(\mathscr{P}(A)\) | power set | Definition 2.1.6 |
| \(\cup\) | union | Definition 2.2.1 |
| \(\cap\) | intersection | Definition 2.2.1 |
| \(\setminus\) | difference | Definition 2.2.1 |
| \(A^c\) | complement of a set \(A\) | Definition 2.2.4 |
| \(\displaystyle\bigcup_{A \in \mathcal{A}} A\) | union over a family \(A\) | Definition 2.3.2 |
| \(\displaystyle\bigcap_{A \in \mathcal{A}} A\) | intersection over a family \(A\) | Definition 2.3.3 |
| \(\mathbb{N}\) | Set of natural numbers | Item |
| \(\mathbb{Z}\) | Set of integers | Item |
| \(\mathbb{Q}\) | Set of rational numbers | Item |
| \(\overline{\mathbb{Q}}\) | Set of algebraic numbers | Item |
| \(\mathbb{R}\) | Set of real numbers | Item |
| \(\mathbb{C}\) | Set of complex numbers | Item |