3.4. Digital Signaling

Two questions we need to answer through this section:
\diamond How to mathematically represent the waveform for a digital signal
\diamond How to estimate the bandwidth of the waveform

Mathematical representation of the waveform: voltage (current) waveform for digital signal:

$$
w(t)=\sum_{k=1}^{N} w_{k} \varphi_{k}(t) \quad 0<t<T_{0}
$$

Where w_{k} represents the digital data, and $\varphi_{k}(t), k=1,2, \ldots . N$, are N orthogonal functions that give the waveform its waveshape. N is the number of dimensions required to describe the waveform.

3.4. Digital Signaling

DEFINIATION: The baud (symbol rate) is:

$$
D=N / T_{0} \text { symbols } / \mathrm{s}
$$

Where N is the number of dimensions used in T_{0} seconds

DEFINIATION: The bit rate is:

$$
R=n / T_{0} \mathrm{bits} / \mathrm{s}
$$

Where n is the number of data bits sent in T_{0} seconds
For the case when the w_{k} 's have binary values (e.g., " 0 " or " 1 "), $n=$ N, and $w(t)$ is said to be a binary signal.

When the w_{k} 's are assigned more then two possible values, $w(t)$ is said to be a multilevel signal.

3.4. Digital Signaling

How can a receiver be build to detect the data?

Input signal at the receiver:

$$
w(t)=\sum_{k=1}^{N} w_{k} \varphi_{k}(t)
$$

output signal at the receiver:

$$
w_{k}=\frac{1}{K_{k}} \int_{0}^{T_{0}} w(t) \varphi_{k}^{*}(t) d t, \quad k=1,2, \ldots, N
$$

3.4. Digital Signaling

Vector Representation

The orthogonal function space corresponds to the orthogonal vector space
Orthogonal function space $w(t)=\sum_{k=1}^{N} w_{k} \varphi_{k}(t) \quad 0<t<T_{0}$

Orthogonal vector space

$$
\mathbf{w}=\sum_{j=1}^{N} w_{j} \varphi_{j}
$$

\mathbf{w} is an N -dimensional vector in Euclidean vector space, and $\left\{\varphi_{j}\right\}$ is an orthogonal set of N -directional vecotr

$$
w=\left(w_{1}, w_{2}, \ldots, w_{N}\right)
$$

3.4. Digital Signaling

Example 3-6. VECTOR REPRESENTATION OF A BINARY SIGNAL

Examine the representation for the waveform of a 3-bit (binary) signal shown in Fig. 3-11a. This signal could be represented by

$$
s(t)=\sum_{j=1}^{N=3} d_{j} p\left[t-\left(j-\frac{1}{2}\right) T\right]=\sum_{j=1}^{N=3} d_{j} p_{j}(t) \quad p_{j}(t) \equiv p[t-(j-1 / 2) T]
$$

(b) Bat Shape Pulse

3.4. Digital Signaling

Bandwidth Estimation

From the Dimensionality Theorem

The bandwidth of

$$
\begin{gathered}
w(t)=\sum_{k=1}^{N} w_{k} \varphi_{k}(t) \\
B \geq \frac{N}{2 T_{0}}=\frac{1}{2} D \quad H z
\end{gathered}
$$

if the φ_{k} are the $\sin (x) / x$ type, the lower bound absolute bandwidth of $N /\left(2 T_{0}\right)=\mathrm{D} / 2$ will be achieved; otherwise, the bandwidth will be larger than this lower bound.

3.4. Digital Signaling

Example 3-7. BINARY SIGNAL

Digital source that can produce $M=256$ distinct messages. Each message could be represented by $\mathrm{n}=8$-bit binary words because $\mathrm{M}=2^{\mathrm{n}}$
$=2^{8}=256$. It takes $T_{0}=8 \mathrm{~ms}$ to transmit one message 01001110
$\mathrm{w}_{1}=0, \mathrm{w}_{2}=1, \mathrm{w}_{3}=0, \mathrm{w}_{4}=0, \mathrm{w}_{5}=1, \mathrm{w}_{6}=1, \mathrm{w}_{7}=1$, and $\mathrm{w}_{8}=0$

CASE I

Rectangular pulse

(a) Rectangular Polse Stape, $T_{b}=1 \mathrm{~ms}$

Bit rate: $R=n / T_{0}=1 \mathrm{kbits} / \mathrm{s}$ baud (symbol rate): $\mathrm{D}=\mathrm{N} / \mathrm{T}_{0}=1 \mathrm{kbaud}$
Lower bound bandwidth is $1 / 2 \mathrm{D}=500 \mathrm{HZ}$.
The actual null bandwidth is $B=1 / T_{s}=D=1,000 \mathrm{~Hz}$

3.4. Digital Signaling

Example 3-7. BINARY SIGNAL

Digital source that can produce $M=256$ distinct messages. Each message could be represented by $\mathrm{n}=8$-bit binary words because $\mathrm{M}=2^{\mathrm{n}}$
$=2^{8}=256$. It takes $T_{0}=8 \mathrm{~ms}$ to transmit one message 01001110 $w_{1}=0, w_{2}=1, w_{3}=0, w_{4}=0, w_{5}=1, w_{6}=1, w_{7}=1$, and $w_{8}=0$

CASE II

sinc pulse
$\varphi_{k}(t)=\frac{\sin \left\{\frac{\pi}{T_{s}}\left(t-k T_{s}\right)\right\}}{\frac{\pi}{T_{s}}\left(t-k T_{s}\right)}$

(b) sias $(x) / x$ Pulse Shape, $T_{\mathrm{p}}=1 \mathrm{~ms}$

Bit rate: $R=n / T_{0}=1 \mathrm{kbits} / \mathrm{s}$ baud (symbol rate): $\mathrm{D}=\mathrm{N} / \mathrm{T}_{0}=1 \mathrm{kbaud}$ bandwidth: $\mathrm{B}=1 / 2 \mathrm{~T}_{\mathrm{s}}=1 / 2 * \mathrm{D}=500 \mathrm{~Hz}$

3.4. Digital Signaling

Multilevel Signaling

\diamond Multilevel signal: w_{k} is multilevel word.
Given message: 01001110
binary: $\mathrm{w}_{1}=0, \mathrm{w}_{2}=1, \mathrm{w}_{3}=0, \mathrm{w}_{4}=0, \mathrm{w}_{5}=1, \mathrm{w}_{6}=1, \mathrm{w}_{7}=1$, and $\mathrm{w}_{8}=0$ $\mathrm{N}=8$
multilevel (L= 4-level): $\mathrm{w}_{1}=-3, \mathrm{w}_{2}=-1, \mathrm{w}_{3}==3, \mathrm{w}_{4}=1$ $\mathrm{N}=4$

TABLE 3-3 A 2-BIT DIGITAL-TO-ANALOG CONVERTER

Binary Input ($\ell=2$ bits)	Output Level (V)
11	+3
10	+1
00	-1
01	-3

3.4. Digital Signaling

Multilevel Signaling

(a) Rectasgular Palve Sapec $T_{s}=1$ ne

$\mathrm{T}_{\mathrm{s}}=2 \mathrm{~ms}$
(middle of symbol intervals)
$\mathrm{D}=\mathrm{N} / \mathrm{T}_{0}=4 / 8=0.5 \mathrm{kbaud}$ $B=D / 2=250 \mathrm{~Hz}$

