
2.7	Bandlimited	Signals	and	Noise	

DEFINIATION.	A	waveform	w(t)	is	said	to	be	(absolutely)	bandlimited	to		
																					B	hertz,	if	

W(f)	=	�	[w(t)]	=	0										for		|f|	≥	B	

Bandlimited	Waveform	

DEFINIATION.	A	waveform	w(t)	is	said	to	be	(absolutely)	@me	limited	if	

w(t)	=	0,										for		|t|	≥	T	



2.7	Bandlimited	Signals	and	Noise	

THEOREM.	A	absolutely	bandlimited	waveform	cannot	be	absolutely	@me		
																					limited,	and	vice	versa.	

Bandlimited	Waveform	

A	physical	waveform	that	is	@me	limited,	may	not	be	absolutely	bandlimited,	but	it	may	be	
bandlimited	for	all	prac@cal	purposes	in	the	sense	that	the	amplitude	spectrum	has	a	
negligible	level	above	a	certain	frequency.	
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2.7	Bandlimited	Signals	and	Noise	

Sampling	Theorem.	Any	physical	waveform	may	be	represented	over	the		
																																					interval	-∞	<	t	<	∞	by	

Sampling	Theorem	

w(t) = an
sin π fs t − (n / fs )[ ]{ }
π fs t − (n / fs )[ ]n=−∞

∞

∑

an = fs w(t)
sin π fs[t − (n / fs )]{ }
π fs t − (n / fs )[ ]−∞

∞

∫ dtwhere	

And	fs	is	a	parameter	that	is	assigned	some	convenient	value	greater		
than	zero.	Furthermore,	if	w(t)	is	bandlimited	to	B	hertz	and	fs	>=	2B,		
then	previous	equa@on	becomes	the	sampling	func@on	representa@on,		
where								
																																																					an	=	w(n/fs)	

That	is,	for	fs	>=	2B,	the	orthogonal	series	coefficients	are	simply	the	
values	of	the	waveform	that	are	obtained	when	the	waveform	is	
sampled	very	1/fs	seconds.	



2.7	Bandlimited	Signals	and	Noise	

Sampling	Theorem	
²  The	MINIMUM	SAMPLING	RATE	allowed	for	reconstruc@on	without	error	is	

called	the	NYQUIST	FREQUENCY	or	the	Nyquist	Rate.	
	
²  Suppose	we	are	interested	in	reproducing	the	waveform	over	a	T0-sec	

interval,	the	minimum	number	of	samples	that	are	needed	to	reconstruct	the	
waveform	is:	

• 	There	are	N	orthogonal	func@ons	in	the	reconstruc@on	algorithm.	We	can	
say	that	N	is	the	Number	of	Dimensions	needed	to	reconstruct	the	T0-second	
approxima@on	of	the	waveform.	
	
• 	The	sample	values	may	be	saved,	for	example	in	the	memory	of	a	digital	
computer,	so	that	the	waveform	may	be	reconstructed	later,	or	the	values	
may	be	transmibed	over	a	communica@on	system	for	waveform	
reconstruc@on	at	the	receiving	end.	

N =
T0
1 / fs

= fsT0 ≥ 2BT0

( fs )Min = 2B



2.7	Bandlimited	Signals	and	Noise	

Sampling	Theorem	

Example	2-19.	Sampling	theorem	for	a	rectangular	pulse	
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2.7	Bandlimited	Signals	and	Noise	

Impulse	Sampling	and	Digital	Signal	Processing	
The	impulse-sampled	series	is	another	orthogonal	series.	It	is	obtained	when	the	
(sin	x)	/	x	orthogonal	func@ons	of	the	sampling	theorem	are	replaced	by	an	
orthogonal	set	of	delta	(impulse)	funcBons.	The	impulse-sampled	series	is	
iden@cal	to	the	impulse-sampled	waveform	ws(t):	both	can	be	obtained	by	
mul@plying	the	unsampled	waveform	by	a	unit-weight	impulse	train,	yielding		

ws (t) = w(t) δ(t − nTs )
n=−∞

∞

∑ = w(nTs )δ(t − nTs )
n=−∞

∞

∑

Waveform	 Impulse	sampled	waveform	



2.7	Bandlimited	Signals	and	Noise	

Impulse	Sampling	and	Digital	Signal	Processing	

ws (t) = w(t) δ(t − nTs )
n=−∞

∞

∑ = w(nTs )δ(t − nTs )
n=−∞

∞

∑

Take	the	Fourier	transform	on	both	sides	of	this	equa@on:	

Ws ( f ) =
1
Ts
W ( f )*ℑ e jnwst

n=−∞

∞

∑
%

&
'

(

)
*=

1
Ts
W ( f )* ℑ[e jnwst ]

n=−∞

∞

∑

=
1
Ts
W ( f )* δ( f − nfs )

n=−∞

∞

∑

=
1
Ts

W ( f − nfs )
n=−∞

∞

∑Or	



2.7	Bandlimited	Signals	and	Noise	

Ø 	The	spectrum	of	the	impulse	sampled	signal	is	the	spectrum	of	the	unsampled	signal	
that	is	repeated	every	fs	Hz,	where	fs	is	the	sampling	frequency	(samples/sec).		

Ø 	This	is	quite	significant	for	digital	signal	processing	(DSP).		

Ø 	This	technique	of	impulse	sampling	maybe	be	used	to	translate	the	spectrum	of	a	
signal	to	another	frequency	band	that	is	centered	on	some	harmonic	of	the	sampling	
frequency.	



2.7	Bandlimited	Signals	and	Noise	

Dimensionality	Theorem	

THEOREM:	When	BT0	is	large,	a	real	waveform	may	be	completely	specified	by	
N=2BT0		
independent	pieces	of	informa@on	that	will	describe	the	waveform	over	a	T0	interval.	N	
is	said	to	be	the	number	of	dimensions	required	to	specify	the	waveform,	and	B	is	the	
absolute	bandwidth	of	the	waveform.	
	
Ø 	The	informa@on	which	can	be	conveyed	by	a	bandlimited	waveform	or	a	
bandlimited	communica@on	system	is	propor@onal	to	the	product	of	the	bandwidth	of	
that	system	and	the	@me	allowed	for	transmission	of	the	informa@on.	

Ø 	The	dimensionality	theorem	has	profound	implica@ons	in	the	design	and	
performance	of	all	types	of	communica@on	systems.	



2.8	Discrete	Fourier	Transform	

DEFINIATION:	The	discrete	Fourier	transform	(DFT)	is	defined	by		

X(n) = x(k)e− j(2π /N )nk

k=0

k=N−1

∑

Where	n	=	0,	1,	2,	…,	N-1,	and	the	inverse	discrete	Fourier	transform	(IDFT)	
Is	defined	by	

x(k) = 1
N

X(n)e j(2π /N )nk

k=0

k=N−1

∑

Where	k	=	0,	1,	2,	…,	N-1,		

²  The	defini@on	could	be	different	according	to	different	authors,	which		
						Only	effect	the	“scale	factor”	and	“frequency	factor”.	
	
²  The	fast	Fourier	transform	(FFT)	is	a	fast	algorithm	for	evalua@ng	the	DFT	



2.8	Discrete	Fourier	Transform	

Using	the	DFT	to	Compute	the	ConKnuous	Fourier	Transform	

In	digital	signal	processing,	we	use	DFT	(approxima@on)to	represent			
CFT	(truth)	through	three	steps.	

ww(t) =
w(t), 0 ≤ t ≤ T

0, otherwise

"

#
$

%
$

= w(t)∏ t − (T / 2)
T

(

)
*

+

,
-

²  Step	1:	the	@me	waveform	is	first	windowed	(truncated)	over	the	interval		
																			(0,	T)	so	that	only	a	finite	number	of	samples	N	are	needed	

²  Step	2:	do	the	Fourier	transform	on	the	windowed	waveform	

Ww( f ) = ww(t)e
− j2π ft dt

−∞

∞
∫ = w(t)e− j2π ft dt

0
T
∫



2.8	Discrete	Fourier	Transform	

Using	the	DFT	to	Compute	the	ConKnuous	Fourier	Transform	

In	digital	signal	processing,	we	use	DFT	(approxima@on)to	represent			
CFT	(truth)	through	three	steps.	

Ww( f ) f =n/T ≈ w(kΔt)e− j(2π /N )nkΔt
k=0

N−1

∑

²  Step	3:	approximate	the	CFT	by	using	a	finite	series	to	represent	the		
																				integral	

Where	 t = kΔt, f = n /T,dt = Δt, and Δt = T / N

The	rela@on	between	CFT	and	DFT	is	

Ww( f ) f =n/T ≈ ΔtX(n)

X(n) = x(k)e− j(2π /N )nk

k=0

k=N−1

∑Where	



2.8	Discrete	Fourier	Transform	

The	DFT	may	give	significant	
errors	when	it	is	used	to		
approximate	the	CFT.	The		
errors	are	due	to	a	number		
of	factors	that	may	be		
categorized	into	three	basic	
effects:	leakage,	aliasing,	
And	the	picket-fence	effect.			



2.8	Discrete	Fourier	Transform	

Using	the	DFT	to	Compute	the	Fourier	Series	

The	DFT	may	be	also	used	to	evaluate	the	coefficients	for	the	complex	
Fourier	series.	

cn =
1
T

w(t)e− j2πnf0t dt
0
T
∫From	

We	approximate	this	integral	by	using	a	finite	series	

t = kΔt, f = n /T,dt = Δt, and Δt = T / N

The	Fourier	series	coefficient	is	related	to	the	DFT	by	

cn ≈
1
N
X(n)

cn ≈
1
T

w(kΔt)e− j(2π /N )nkΔt
k=0

N−1

∑
where	



2.8	Discrete	Fourier	Transform	

Using	the	DFT	to	Compute	the	Fourier	Series	

The	Fourier	series	coefficient	is	related	to	the	DFT	by	

cn ≈
1
N
X(n)

For	posi@ve	n,	we	use	

cn =
1
N
X(n) 0 ≤ n < N / 2

For	nega@ve	n,	we	use	

cn =
1
N
X(N + n) −N / 2 < n < 0



2.9	Bandwidth	of	Signals	
In	engineering	definiKons,	the	bandwidth	is	taken	to	be	the	width	of	
posiKve	frequency	band.			

We	will	give	six	engineering	defini@ons	and	one	legal	defini@on	of		
Bandwidth	that	are	ojen	used.	
²  Absolute	bandwidth	is	f2	–	f1:	where	the	spectrum	is	zero	outside	the		
					Interval	f1	<	f	<	f2	along	the	posi@ve	frequency	axis.	
								
			



2.9	Bandwidth	of	Signals	

²  3-dB	bandwidth	(or	half-power	bandwidth)	is	f2	–	f1:	where	for	frequency	
					inside	the	band		f1	<	f	<	f2	,	the	magnitude	spectra,	say,	|H(f)|,	fall	no	lower		
					than	1/√2	@mes	the	maximum	value	of	|H(f)|,	and	the	maximum	value		
					occurs	at	a	frequency	inside	the	band.	
			

3dB	



2.9	Bandwidth	of	Signals	

²  Equivalent	noise	bandwidth:	the	width	of	a	fic@@ous	rectangular	spectrum	
					such	that	the	power	in	that	rectangular	band	is	equal	to	the	power		
					associated	with	the	actual	spectrum	over	posi@ve	frequencies.	

Beq =
1

|H ( f0 ) |
2 H ( f ) 2 df

0
∞
∫



2.9	Bandwidth	of	Signals	

²  Null-to-null	bandwidth	(or	zero-crossing	bandwidth)	is	f2	–	f1:		where	f2	is	
					the	first	null	in	the	envelope	of	the	magnitude	spectrum	above	f0	and,	for	
					bandpass	system,	f1	is	the	first	null	in	the	envelope	below	f0,	where	f0	is	
					the	frequency	where	the	magnitude	spectrum	is	maximum.	For	baseband	
					systems,	f1	is	usually	zero.	

|X(f)|	

2Bn	

0	

Null-to-null	Bandwidth	Bn	



2.9	Bandwidth	of	Signals	

²  Bounded	spectrum	bandwidth	is	f2	–	f1	such	that	outside	the	band		
					f1	<	f	<	f2	,	the	PSD,	which	is	propor@onal	to	|H(f)|2,	must	be	down	by		
						at	least	a	certain	amount,	say	50	dB,	below	the	maximum	value	of	the		
				power	spectral	density.	
	
²  Power	bandwidth	is	f2	–	f1	where		f1	<	f	<	f2	defines	the	frequency	band		
					in	which	99%	of	the	total	power	resides.	This	is	similar	to	the	FCC	defini@on	
					of	occupied	bandwidth,	which	states	that	the	power	above	the	the	upper	
					band	edge	f2	is	0.5%	and	the	power	below	the	lower	band	edge	is	0.5%,	
					leaving	99%	of	the	total	power	within	the	occupied	band.		
	
²  FCC	bandwidth	is	an	authorized	bandwidth	parameter	assigned	by	the		
					FCC	to	specifiy	the	spectrum	allowed	in	communica@on	systems.	


