Linear Time-Invariant System

An electronic filter or system is *Linear* when *Superposition* holds, that is when,

$$y(t) = L[a_1x_1(t) + a_2x_2(t)] = a_1L[x_1(t)] + a_2L[x_2(t)]$$

- Where y(t) is the output and $x(t) = a_1x_1(t) + a_2x_2(t)$ is the input.
- L[.] denotes the linear system operator acting on [.].

Linear Time-Invariant System

Example. Are the following system is linear system or not?

1.)
$$y(t) = 5x(t)$$

2.)
$$y(t) = 5x(t) + 3$$

Linear Time-Invariant System

Conditions for time-invariance

$$Sys\{x(t)\} = y(t)$$
 implies that $Sys\{x(t-\tau)\} = y(t-\tau)$

- If the system is time invariant for any delayed input $x(t t_0)$, the output is delayed by just the same amount $y(t t_0)$.
- That is, the shape of the response is the same no matter when the input is applied to the system.

Linear Time-Invariant System

Example. Are the following system is time-invariant system or not?

1.)
$$y(t) = 5x(t)$$

2.)
$$y(t) = 5x(t) + 3$$

Impulse Response

The impulse response is the solution to the differential equation when the forcing function is a Dirac delta function. That is

$$y(t) = h(t)$$
 when $x(t) = \delta(t)$.

A general waveform at the input may be approximated by

$$x(t) = \sum_{n=0}^{\infty} x(n\Delta t) \left[\delta(t - n\Delta t) \right] \Delta t$$

The output may be approximated by

$$y(t) = \sum_{n=0}^{\infty} x(n\Delta t) [h(t - n\Delta t)] \Delta t$$

This expression becomes the exact result as Δt becomes zero, letting $n\Delta t = \lambda$, we obtain

Convolution
$$y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda = x(t)*h(t)$$

Transfer Function

- → The output waveform for a time-invariant network can be obtained by convolving the input waveform with the impulse response of the system.
- → The spectrum of the output signal is obtained by taking the Fourier transform of both sides. Using the convolution theorem, we get

$$Y(f) = X(f)H(f)$$

$$H(f) = \frac{Y(f)}{X(f)}$$

or

or $H(f) = \Im[h(t)]$ is said to be the **transfer function** or **frequency response** of the network.

Transfer Function

The impulse response and frequency response are a Fourier transform pair

$$h(t) \longleftrightarrow H(f)$$

Of course, the transfer function H(f) is, in general, a complex quantity and can be written in polar form as

$$H(f) = |H(f)|e^{j \angle H(f)}$$

where |H(f)| is the **amplitude** (or **magnitude**) response and

$$\theta(f) = \angle H(f) = \tan^{-1} \left[\frac{\operatorname{Im}\{H(f)\}}{\operatorname{Re}\{H(f)\}} \right]$$

is the *phase* response of the network.

Transfer Function

Since h(t) is a real function of time (for real networks), it follows

- \Rightarrow |H(f)| is an even function of frequency (|H(-f)| = |H(f)|)
- $\Rightarrow \vartheta(f)$ is an odd function of frequency. $(\vartheta(-f) = -\vartheta(f))$

Example

Output

Input

$$x(t) = A\cos w_0 t$$

$$H(f_0) = |H(f_0)|e^{j \angle H(f_0)}$$

$$y(t) = A|H(f_0)|\cos[w_0 t + \angle H(f_0)]$$

$$X(f) = \sum_{n=-\infty}^{\infty} c_n \delta(f - nf_0)$$

$$Y(f) = \sum_{n=-\infty}^{\infty} c_n H(nf_0) \delta(f - nf_0)$$

Power Transfer Function

We also can obtain the relationship between the *power spectral density* (PSD) at the input, and the output for a linear time-invariant network as:

$$P_{y}(f) = \lim_{T \to \infty} \frac{1}{T} \big| Y_{T}(f) \big|^{2}$$
 using
$$Y(f) = X(f)H(f)$$

we get
$$P_{y}(f) = |H(f)|^{2} \lim_{T \to \infty} \frac{1}{T} |X_{T}(f)|^{2}$$

or
$$P_{y}(f) = |H(f)|^{2} P_{x}(f)$$

Power transfer function
$$G_h(f) = \frac{P_y(f)}{P_x(f)} = |H(f)|^2$$

Distortionless Transmission

In communication systems, a distortionless channel is often desired. This implies that the channel output is just proportional to a delayed version of the input

$$y(t) = A(x - T_d)$$

Where A is the gain (which may be less than unity) and T_d is the delay

In the frequency domain

$$Y(f) = AX(f)e^{-j2\pi fT_d}$$

The transfer function of the channel is

$$H(f) = \frac{Y(f)}{X(f)} = Ae^{-j2\pi fT_d}$$

Distortionless Transmission

For a linear time-invariant system, two requirements are needed as Distortionless system.

♦ The amplitude response if flat. That is.

$$|H(f)| = constant = A$$

No Amplitude Distortion

♦ The phase response is a linear function of frequency. That is

$$\theta(f) = \angle H(f) = -2\pi f T_d$$

No Phase Distortion

We define the *time delay* of the system as

$$T_d(f) = -\frac{1}{2\pi f}\theta(f) = -\frac{1}{2\pi f} \angle H(f)$$

For distortionless system, $T_d(f)$ must be constant.

Example 2-18 RC Low-Pass Filter

Example 2-18 Distortion caused by a filter

Effects of Distortion

Audio

Human ear more sensitive to amplitude distortion, but less so to phase distortion

Analog Video

Human visual system more sensitive to time delay errors, which result in smearing of edges, but less so to intensity variation

Digital Signals

Pulses smearing into other time slots – "Inter-Symbol Interference" (ISI)