
DEFNITION.	The	Fourier	Transform	(FT)	of	a	waveform	w(t)	is	

1	

2.2	Fourier	transform	and	spectra	

W ( f ) = f[w(t)]= lim
T −>∞

[w(t)]e− j2π ft dt
−∞

∞

∫
Where	f[*]	denotes	the	Fourier	transform	of	[*],	and	f	is	the	frequency		

parameter	with	units	of	hertz	(i.e.,	1/s).	This	defines	the	term	frequency.		

It	is	the	parameter	f	in	the	Fourier	transform.			

What	is	Fourier	and	Fourier	Transform???	

W(f)	is	also	called	a	two-sided	spectrum	of	w(t),	because	both	posiFve	and		
NegaFve	frequency	components	are	obtained	from	previous	equaFon.			



2	

2.2	Fourier	transform	and	spectra	

What	is	Fourier	and	Fourier	Transform	??	

Name:	Jean	BapFste	Joseph	Fourier	

Year:	1768-1830	

Na@onality:	French	

Fields:	MathemaFcian,	physicist,	historian			

	

Fourier	is	a	man,	a	genius	
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2.2	Fourier	transform	and	spectra	
Fourier	Series	and	Fourier	Transformer			

A	weighted	summaFon	of	Sines	and	Cosines	of	different	frequencies	can	be	used	to	
represent	periodic	(Fourier	Series),	or	non-periodic	(Fourier	Transform)	funcFons.			

Is	this	true?	
People	didn’t	believe	that,	including	Lagrange,	Laplace,	Poisson,	and	other	big	wigs.	

But,	yes,	this	is	true?	
Possibly	the	greatest	tool	used	in	Engineering,	one	of	the	the	fundaments	of	

modern	communicaFon,	control,	signal	processing,	and	etc.		



Fourier	Series	

4	

2.2	Fourier	transform	and	spectra	

Approxima@ng	a	periodic	signal	with	trigonometric	func@ons		

For	a	periodic	signal											which	is	periodic	with	period	T0	has	the	property		!x(t)
!x(t +T ) = !x(t)

A	

-A	

T0/2	

T0	

Periodic	square-wave	signal	



Fourier	Series	

2.2	Fourier	transform	and	spectra	

Approxima@ng	a	periodic	signal	with	trigonometric	func@ons		

!x(t)The	best	approximaFon	to									using	only	one	trigonometric	funcFon	is		

!x (1) (t) = 4A
π
sin(ω0t)

!x (1) (t)!x(t)

A	

-A	 T0	

!ε1(t) = !x(t)− !x
(1) (t)

A	

-A	



Fourier	Series	

2.2	Fourier	transform	and	spectra	

Approxima@ng	a	periodic	signal	with	trigonometric	func@ons		

!x(t)Let’s	try	a	three-frequency	approximaFon	to											and	see	if	the	approximate		

error	can	be	reduced.	

!x (3) (t) = b1 sin(ω0t)+ b2 sin(2ω0t)+ b3 sin(3ω0t)
!ε3(t) = !x(t)− !x

(3) (t) = !x(t)− b1 sin(ω0t)− b2 sin(2ω0t)− b3 sin(3ω0t)

!x (3) (t)
!x(t)

A	

-A	 T0	

!ε3(t) = !x(t)− !x
(3) (t)

A	

-A	



Fourier	Series	

2.2	Fourier	transform	and	spectra	

Approxima@ng	a	periodic	signal	with	trigonometric	func@ons		

!x(t)Let’s	try	a	15-frequency	approximaFon	to											and	see	if	the	approximate		

error	can	be	reduced.	

!x (15) (t) = b1 sin(ω0t)+ b2 sin(2ω0t)+ . . . + b15 sin(15ω0t)

!x (15) (t)
!x(t)

A	

-A	 T0	

!ε15(t) = !x(t)− !x
(15) (t)

A	

-A	



Fourier	Series	

2.2	Fourier	transform	and	spectra	

Trigonometric	Fourier	Series	(TFS)	

!x(t) = a0 + ak cos(kω0t)
k=1

∞

∑ + bk sin(kω0t)
k=1

∞

∑

Exponen@al	Fourier	Series	(EFS)	

!x(t) = cke
jkw0t

k=−∞

∞

∑

e jθ = cos(θ )+ j sin(θ )



Fourier	Transform	

2.2	Fourier	transform	and	spectra	



Fourier	Transform	for	con@nuous-@me	signals	

2.2	Fourier	transform	and	spectra	

Fourier	Transform	(Forward	Transform)	

W ( f ) =ℑ[w(t)]= [w(t)]e− j2π ft dt
−∞

∞
∫

Inverse	Fourier	Transform	(Inverse	Transform)	

w(t) =ℑ−1[w(t)]= [W ( f )]e j2π ft dt
−∞

∞
∫



Alterna@ve	Evalua@on	Techniques	for	FT	Integral	
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2.2	Fourier	transform	and	spectra	

²  Direct	integraFon.		
²  Tables	of	Fourier	transforms	or	Laplace	transforms.		

²  FT	theorems.		

²  SuperposiFon	to	break	the	problem	into	two	or	more	

simple	problems.		

²  DifferenFaFon	or	integraFon	of	w(t).		
²  Numerical	integraFon	of	the	FT	integral	on	the	PC	via	

MATLAB	or	MathCAD	integraFon	funcFons.		

²  Fast	Fourier	transform	(FFT)	on	the	PC	via	MATLAB	or	

MathCAD	FFT	funcFons.		



2.2	Fourier	transform	and	spectra	

DEFNITION.	The	Fourier	Transform	(FT)	of	a	waveform	w(t)	is	

W ( f ) =ℑ[w(t)]= lim
T−>∞

[w(t)]e− j2π ft dt
−∞

∞
∫

W(f)	is	a	complex	funcFon	of	frequency,	and	can	therefore	be	represented	in	as	

( ) ( ) ( )W f X f jY f= + ( )( ) ( ) j fW f W f e θ=

2 2( ) ( ) ( )W f X f Y f= + 1 ( )( ) tan
( )

Y ff
X f

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

Quadrature	/	Cartesian	 Magnitude-Phase	/	Polar	



2.2	Fourier	transform	and	spectra	

DEFNITION.	The	Inverse	Fourier	Transform	(FT)	of	a	waveform	w(t)	is	

w(t) = W ( f )e j2π ft df
−∞

∞

∫

The	funcFons	w(t)	and	W(f)	consFtute	a	Fourier	transform	pair		

w(t)																																																												W(f)	

Time	domain	 Frequency	domain	

Fourier	transform	

Inverse	Fourier	transform	



2.2	Fourier	Transform	and	Spectra	

The	waveform	w(t)	is	Fourier	transformable	if	it	saFsfies	both	

Dirichlet	condi@ons:	

² Over	any	Fme	interval	of	finite	length,	the	funcFon	w(t)	is	single		
							valued	with	a	finite	number	of	maxima	and	minima,	and	the		
							number	of	disconFnuiFes	(if	any)	is	finite.	

	

²  	w(t)	is	absolutely	integrable.		That	is,		
								

|w(t) | dt <∞
−∞

∞

∫

Above	condiFons	are	sufficient,	but	not	necessary	



2.2	Fourier	Transform	and	Spectra	

A	weaker	sufficient	condiFon	for	the	existence	of	the	Fourier	
transform	is:	

Finite	Energy		
2

( )E w t dt
∞

−∞
= <∞∫

Where	E	is	the	normalized	energy.	
This	is	the	finite-energy	condi@on	that	is	saFsfied	by	all	physically	
realizable	forms.	

	

Conclusion:	All	physical	waveforms	encountered	in	engineering		

																						pracFce	are	Fourier	transformable.	
	



2.2	Fourier	Transform	and	Spectra	

Example	2-3.	Spectrum	of	an	exponen@al	pulse	

real		

image		

magnitude		

phase		

w(t) =
e−t if t > 0

0 if t < 0

"

#
$

%
$

Let	w(t)	be	a	decaying	exponenFal	pulse	that	is	switched	on	at	t	=	0.	That	is	

find	its	spectrum?	



Proper@es	of	Fourier	Transforms	
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2.2	Fourier	transform	and	spectra	

THEOREM.	Spectral	symmetry	of	real	signals.	If	w(t)	is	real,	then	

W (− f ) =W *( f )

The	superscript	asterisk	denotes	the	conjugate	operaFon.	
																																		x(t) = a+ bj x*(t) = a− bj

Proper@es	of	the	Fourier	transform:	

Ø  f,	called	frequency	and	having	units	of	hertz,	specifies	the	specific	frequency	
					in	the	waveform	w(t).	
Ø  The	FT	looks	for	the	frequency	f	in	the	w(t)	over	all	Fme.	That	is,	over	

			

	

Ø  W(f)	can	be	complex,	even	though	w(t)	is	real	
Ø  If	w(t)	is	real,	then	W(-f)=W*(f)	
		

−∞ < t <∞
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2.2	Fourier	transform	and	spectra	
Example	2-4.	Spectrum	of	a	damped	sinusoid	

w(t) =
e−t /T sinω0t if t > 0,T > 0

0 if t < 0

"

#
$

%
$

Let	damped	sinusoid	be	given	by	

find	its	spectrum?	



Proper@es	of	Fourier	Transforms	

Rayleight’s	Energy	Theorem:	

	
	

w1(t)
2 dt

−∞

∞

∫ = W1( f )
2 df

−∞

∞

∫

The	energy	calculated	from	the	@me	domain	is	equal	to	
the	energy	calculated	from	the	frequency	domain	

19	

2.2	Fourier	transform	and	spectra	

Parseval’s	Theorem:	

	
	

w1(t)w2
*(t)dt

−∞

∞

∫ = W1( f )W2
*( f )df

−∞

∞

∫

If	w1(t)=w2(t)=w(t),	then	the	theorem	reduces	to	



Parseval’s	Theorem	and	Energy	Spectral	Density	

2.2	Fourier	transform	and	spectra	

DEFNITION.	The	Energy	Spectral	Density	(ESD)	is	defined	for	energy	waveforms	by	

We	can	see	that	the	total	normalized	energy	is	given	by	the		
area	under	ESD	func@on	



Some	Fourier	Transform	Theorems	
2.2	Fourier	transform	and	spectra	



Dirac	Delta	Func@on	

2.2	Fourier	transform	and	spectra	

DEFINATION.	The	Dirac	delta	funcCon									is	defined	by	δ(x)

t	

δ(x) 
w(x)δ(x)dt

−∞

∞

∫ = w(0)

where	w(x)	is	any	funcFon	that	is	conFnuous	at	x	=	0.	
An	alternaFve	definiFon	of	δ(x)	is:	

δ(x) =
0 if x ≠ 0

∞ if x = 0

#

$
%

&
%

δ(x)dx =1
−∞

∞

∫and	



Dirac	Delta	Func@on	

2.2	Fourier	transform	and	spectra	

	The	SiDing	Property	of										is		δ(x)

w(x)δ(x − x0 )dt
−∞

∞

∫ = w(x0 )



Unit	Step	Func@on	

2.2	Fourier	transform	and	spectra	

u(t) =
1 if t > 0

0 if t < 0

!

"
#

$
#

t	

u(t)	

1	

u(t − t1) =
1 if t > t1

0 if t < t1

"

#
$

%
$

t	

u(t)	

1	

	Time	shiD	of	the	unit-step	funcFon	

t1	



2.2	Fourier	transform	and	spectra	
The	rela@onship	between	unit-step	and	Delta	funcFons		

u(t) = δ(λ)
−∞

∞

∫ dλ δ(t) = du
dt
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2.2	Fourier	transform	and	spectra	
Example	2-5.	Spectrum	of	a	sinusoid	

v(t) = Asinω0t
Find	the	spectrum	of	a	sinusoidal	voltage	waveform	that	has	a	frequency	f0	and	

A	peak	value	of	A	volts.	That	is																													where	 find	its	spectrum?	ω0 = 2π f0



Rectangular	Pulses	

2.2	Fourier	transform	and	spectra	

∏( t
T
) =

1, | t |< T / 2

0, | t |> T / 2

"

#
$

%
$

Δ

DEFINATION.	The	single	rectangular	pulse	is	denoted	as			∏(•)

DEFINATION.												Denoted	the	funcFon			Sa(•) Sa(x) = sin x
x
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2.2	Fourier	transform	and	spectra	
Example	2-6.	Spectrum	of	a	rectangular	pulse	

w(t) = (t /T )∏Find	the	spectrum	of	a	rectangular	pulse		



Spectrum	of	a	Rectangular	Pulse	

2.2	Fourier	transform	and	spectra	

( )( ) ( )tw t W f T Sa fT
T
⎛ ⎞=Π ⇔ = ⋅⎜ ⎟
⎝ ⎠

•  Rectangular pulse is a time window. 
•  FT is a sinc function, infinite frequency content. 
•  Shrinking time axis causes stretching of  frequency axis. 
•  Signals cannot be both time-limited and bandwidth-limited. 

Note	the	inverse	relaFonship		between	the	pulse	width	T	and	the	zero	crossing	1/T	



Triangular	Pulses	

2.2	Fourier	transform	and	spectra	

Λ( t
T
) =

1− | t |
T
, | t |≤ T

0, | t |> T

$

%
&&

'
&
&

Δ

DEFINATION.	The	single	triangular	funcCon	is	denoted	as			Λ(•)
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2.2	Fourier	transform	and	spectra	
Example	2-7.	Spectrum	of	a	triangular	pulse	

w(t) = Λ(t /T )Find	the	spectrum	of	a	triangular	pulse	

2( ) ( ) ( )tw t W f T Sa fT
T

π⎛ ⎞= Λ ⇔ = ⋅⎜ ⎟
⎝ ⎠



Convolu@on	
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2.2	Fourier	transform	and	spectra	

DEFNITION.	The	convoluCon	of	a	waveform	w1(t)	with	a	wave	w2(t)	to	produce			
																							a	third	waveform	w3(t)	is	

ω3(t) =ω1(t)∗ω2 (t) = ω1(λ)ω2 (t −λ)
−∞

∞

∫ dλ

Where																								is	a	shorthand	notaFon	for	this	integraFon	operaFon	and	*	is	read		

“convolved	with.”		
ω1(t)∗ω2 (t)

= ω1(λ)ω2 (−(λ − t))
−∞

∞

∫ dλ

The	convoluCon	can	be	obtained	through	three	steps:	

1.   Time	reversal	of													to	obtain													.	

2.   Time	shiding	of									by	t	seconds	to	obtain	

3.   Mul@plying	this	result	by									to	form	the	integrand					

ω2 (t) ω2 (−λ)

ω2 ω2 (−(λ − t))
ω1 ω1(λ)ω2 (−(λ − t))



Convolu@on	of	a	rectangle	with	and	exponen@al	

33	

2.2	Fourier	transform	and	spectra	

ω2 (t) =∏ t −1( )ω1(t) = e
−tu(t) and	
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2.2	Fourier	transform	and	spectra	
Example	2-8.	Convolu@on	of	a	rectangle	with	an	exponen@al	

w1(t) =Π
t − 1
2
T

T

#

$

%
%
%

&

'

(
(
(

let	

and	

w2 (t) = e
−t /Tu(t)



Power	spectral	density	
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2.3	Power	spectral	density	and	autocorrela@on	
func@on	

DEFNITION.	The	power	spectral	density	(PSD)	for	a	determinisFc				

																							power	waveform	is	

pw ( f ) = limT −>∞
Wr ( f )

2

T

#

$
%
%

&

'
(
(

Where																													and														has	units	of	wa6s	per	hertz.	wT (t)↔WT ( f ) pw ( f )

Note:		

1.)	The	PSD	represents	the	normalized	power	of	a	waveform	in	its		

							frequency	domain	

2.)	The	PSD	is	always	a	real	nonnegaCve	funcFon	of	frequency.		

3.)	The	PSD	is	not	sensiCve	to	the	phase	spectrum	of	w(t).	
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2.3	Power	spectral	density	and	autocorrela@on	
func@on	

P =< w2 (t)>= Pw
−∞

∞

∫ ( f )

The	Normalized	Average	Power		

This	means	the	area	under	the	PSD	func@on	is	the	normalized	
average	power	



Autocorrela@on	Func@on	
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2.3	Power	spectral	density	and	autocorrela@on	func@on	

DEFNITION.	The	AutocorrelaCon	of	a	real	(physical)	waveform	is	

Rw (τ ) = ω(t)ω(t +τ ) = lim
T −>∞

1
T

ω(t)ω(t +τ )dt
−T /2

T /2

∫

Wiener-Khintchine	Theorem:	The	PSD	and	the	autocorrelaCon	
funcFon	are	Fourier	transform	pairs:	

Rw (τ )↔ Pw ( f )

The	PSD	can	be	evaluated	by	either	of	the	following	two	methods:	

²  Direct	method:	by	using	the	definiFon.	

²  Indirect	method:	by	first	evaluaFng	the	autocorrelaFon	funcFon	
																																						and	then	taking	the	FT.	

Pw ( f ) =ℑ[Rw (τ )]



The	average	power	can	be	obtained	by	any	of	the	
four	techniques	

38	

2.3	Power	spectral	density	and	autocorrela@on	func@on	

P =< w2 (t)>=Wrms
2 = Pw

−∞

∞

∫ ( f )df = RW (0)
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2.3	Power	spectral	density	and	autocorrela@on	func@on	

Example	2-9.	PSD	of	a	sinusoid	Example	2-9.	PSD	of	a	sinusoid	

w(t) = sinω0tlet	
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2.4	Orthogonal	Series	Representa@on	of	Signal	and	Noise	
Orthogonal	Func@on	

40	

DEFNITION.	FuncFons	φn(t)	and	φm(t)		are	said	to	be	orthogonal		
																							with	respect	to	each	other	over	the	interval	a	<	t	<	b		
																							if	they	saFsfy	the	condiFon		

ϕn (t)ϕm
* (t)dt =

0 n ≠m

Kn n =m

"

#
$

%
$

&

'
$

(
$a

b

∫ = Knδnm

²  	δnm	is	called	the	Kronecker	delta	funcCon	
²  If	the	constants	Kn	are	all	equal	to	1	then	the	φn(t)	are	said	to	be		
						orthonormal	funcCons.		

δnm ≡
0 n ≠m

1 n =m

#

$
%

&%

'

(
%

)%
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2.4	Orthogonal	Series	Representa@on	of	Signal	and	Noise	
Orthogonal	Series	

41	

THEOREM.	w(t)	can	be	represented	over	the	interval	(a,b)	by	the	series	

w(t) = anϕn (t)
n
∑

Assume	that	w(t)	represents	some	pracFcal	waveform	(signal,	noise,	

or	signal-noise	combinaFon)	that	we	wish	to	represent	over	the	

interval	a	<	t	<	b.	Then	we	can	obtain	an	equivalent	orthogonal	series	

representaFon	by	using	the	following	theorem.		

where	the	orthogonal	coefficients	are	given	by	

an =
1
Kn

w(t)ϕn
*(t)dt

a

b

∫

And	the	range	of	n	is	over	the	integer	values	that	correspond	to	the	

subscripts	that	were	used	to	denote	the	orthogonal	funcFon	in	the	

complete	orthogonal	set	



2.4	Orthogonal	Series	Representa@on	of	Signal	and	Noise	
Applica@on	of	Orthogonal	Series	

42	

Ø 	It	is	also	possible	to	generate	w(t)	from	the	ϕj(t)	funcFons	and	the	coefficients	aj.		

Ø 	In	this	case,	w(t)	is	approximated	by	using	a	reasonable	number	of	the	ϕj(t)	funcFons.		

w(t)	is	realized	by	
adding	weighted	
versions	of	
orthogonal	
func@ons	
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2.5	Fourier	Series	
Complex	Fourier	Series	

43	

THEOREM.	A	physical	waveform	(i.e.	finite	energy)	may	be	represented	

over	the	interval	a	<	t	<	a+T0		by	the	complex	exponenFal	Fourier	series	

w(t) = cne
jnω0t

n=−∞

∞

∑

where	the	complex	(phasor)	Fourier	coefficient	are	

cn =
1
T0

w(t)e− jnw0t dt
a

a+T0∫

and	where		 ω0 = 2π f0 =
2π
T0

The	complex	Fourier	series	uses	the	orthogonal	exponenFal	funcFon	
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2.5	Fourier	Series	

Complex	Fourier	Series	

44	

w(t) = cne
jnω0t

n=−∞

∞

∑ cn =
1
T0

w(t)e− jnw0t dt
a

a+T0∫

²  Cn	is	the	Fourier	Series.	In	general,	it	is	a	complex	number.	The	Fourier	coefficient	

C0	is	equivalent	to	the	DC	value	of	the	waveform	w(t).	

²  If	the	waveform	w(t)	is	periodic	with	period	T0,	this	Fourier	series	representaFon	
						Is	valid	over	all	Fme.	

	

²  For	this	case	of	periodic	waveforms,	the	choice	of	a	is	arbitrary	and	is	usually	

taken	to	be	a	=	0	or	a	=	-T0/2	for	mathemaFcal	convenience.	

	

²  The	frequency	f0	=	1/T0	is	said	to	be	the	fundamental	frequency	and	the		
					frequency		nf0	is	said	to	be	the	nth	harmonic	frequency,	when	n>1.	
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2.5	Fourier	Series	

Some	Proper@es	of	the	Complex	Fourier	Series	

45	
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2.5	Fourier	Series	
Some	Proper@es	of	the	Complex	Fourier	Series	

46	

Note	that	these	proper@es	for	the	complex	Fourier	series	coefficients	are	similar	
to	those	of	Fourier	transform	as	given	Sec.	2-2	
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2.5	Fourier	Series	
Quadrature	Fourier	Series	

47	

w(t) = an cos(nω0t)+
n=0

∞

∑ bn sin(nω0t)
n=0

∞

∑

The	Quadrature	Form	of	the	Fourier	series	represenFng	any	physical	waveform	

w(t)	over	the	interval	a	<	t	<	a+T0	is,	

Where	the	orthogonal	func@ons	are	cos(nw0t)	and	sin(nw0t).	we	find	that		

these	Fourier	coefficients	are	given	by	
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2.5	Fourier	Series	
Polar	Fourier	Series	

48	

w(t) = D0 + Dn cos(nω0t +ϕn )
n=1

∞

∑

The	Polar	Form	of	the	Fourier	series	represenFng	any	physical	waveform	is,	

Where	w(t)	is	real	and	

an =
D0, n = 0

Dn cosϕn, n ≥1

"

#
$

%
$

bn = −Dn sinϕn n ≥1

These	two	equaFons	may	be	inverted,	we	got	

Dn =
a0, n = 0

an
2 + bn

2 , n ≥1

"

#
$$

%
$
$

=
c0, n = 0

2 | cn |, n ≥1

"

#
$

%
$

ϕn = − tan
−1 bn

an

"

#
$

%

&
'=∠cn,n ≥1



2.5	Fourier	Series	

What	is	the	best	form	to	use?	
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2.5	Fourier	Series	
Line	Spectra	for	Periodic	Waveforms	
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THEOREM.	If	w(t)	is	periodic	with	period	T0	and	is	represented	by	

w(t) = h(t − nT0 ) =
n=−∞

∞

∑ cne
jnw0t

n=−∞

∞

∑

where	

h(t) =
w(t), t < T0

2

0, elsewhere

!

"
##

$
#
#

and	where		

cn = f0H (nf0 )

H ( f ) =ℑ[h(t)]

Then	the	Fourier	coefficients	are	given	by	

and	f0	=	1/T0		
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2.5	Fourier	Series	

51	

THEOREM.	For	a	periodic	waveform	w(t),	the	normalized	power		is		

Pw = w2 (t) = cn
2

n=−∞

∞

∑

Where	the	{cn}	are	the	complex	Fourier	coefficients	for	the	waveform	
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2.5	Fourier	Series	

52	

THEOREM.	For	a	periodic	waveform	w(t),	the	power	spectral	density	
																					(PSD)		is		

P( f ) = cn
2
δ( f − nf0 )

n=−∞

∞

∑

Where	T0	=	1/f0	is	the	period	of	the	waveform,	and		the	{cn}	are	the	
complex	Fourier	coefficients	for	the	waveform	


