2.2 Fourier transform and spectra

DEFNITION. The Fourier Transform (FT) of a waveform w(t) is
W) =flw®]=1im [ [w(n)le* dr

Where f[*] denotes the Fourier transform of [*], and fis the frequency
parameter with units of hertz (i.e., 1/s). This defines the term frequency.
It is the parameter f in the Fourier transform.

W(f) is also called a two-sided spectrum of w(t), because both positive and
Negative frequency components are obtained from previous equation.

What is Fourier and Fourier Transform???



2.2 Fourier transform and spectra

What is Fourier and Fourier Transform ??

Fourier is a man, a genius

Name: Jean Baptiste Joseph Fourier
Year: 1768-1830
Nationality: French

Fields: Mathematician, physicist, historian




2.2 Fourier transform and spectra

Fourier Series and Fourier Transformer

A weighted summation of Sines and Cosines of different frequencies can be used to
represent periodic (Fourier Series), or non-periodic (Fourier Transform) functions.

Is this true?
People didn’t believe that, including Lagrange, Laplace, Poisson, and other big wigs.

But, yes, this is true?

Possibly the greatest tool used in Engineering, one of the the fundaments of
modern communication, control, signal processing, and etc.



2.2 Fourier transform and spectra
Fourier Series
Approximating a periodic signal with trigonometric functions

For a periodic signal X(#) which is periodic with period T,has the property
x(t+T)=Xx(t)
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2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions

The best approximation to x(#) using only one trigonometric function is

(1) = ——sin(w,t)
TT
x(1) V(1) E@)=x1)—X" ()
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2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions
Let’s try a three-frequency approximation to Xx(z) and see if the approximate

error can be reduced.
x9(t) = b, sin(w, 1) + b, sin(2w,t) + b, sin(3w, t)

E,(t)=X()- X (t) = X(t)- b, sin(w,t) - b, sin(2w,t) — b, sin(3w, 1)

— XV(1)
N
/ : \

B0 =30)-FV0)

1-
A
0.5:
o-

-0.5
-1

A

e(t)

-A




2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions

Let’s try a 15-frequency approximation to Xx(z) and see if the approximate
error can be reduced.

(@) = b sin(w,t)+b,sinRw,t)+ . . . +b.sin(15w,¢)
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2.2 Fourier transform and spectra

Fourier Series

Trigonometric Fourier Series (TFS)

AN % %
%(1)=a, + ¥ a, cos(kw,t)+ ¥ b, sin(ko,t)
k=1 k=1

|ej‘9 = cos(0) + jsin(0) |

N
Exponential Fourier Series (EFS)

X(t) = E c.e’

k=—00



2.2 Fourier transform and spectra

Fourier Transform

A non-periodic signal z (t):

xrin
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Periodic extension £ (t) of the signal z(t):
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2.2 Fourier transform and spectra

Fourier Transform for continuous-time signals

Fourier Transform (Forward Transform)

W) =Rwl= [ wnle™>  ar

Inverse Fourier Transform (Inverse Transform)

w()=3""w(o)] = [ W (e di



2.2 Fourier transform and spectra

Alternative Evaluation Techniques for FT Integral

<> Direct integration.
<> Tables of Fourier transforms or Laplace transforms.
<> FT theorems.

<> Superposition to break the problem into two or more
simple problems.

<> Differentiation or integration of w(t).

<> Numerical integration of the FT integral on the PC via
MATLAB or MathCAD integration functions.

<> Fast Fourier transform (FFT) on the PC via MATLAB or
MathCAD FFT functions.



2.2 Fourier transform and spectra

DEFNITION. The Fourier Transform (FT) of a waveform w(t) is

W(f)=[w()] = 11m f [w(t)]e /> ar

W(f) is a complex function of frequency, and can therefore be represented in as

Quadrature / Cartesian Magnitude-Phase / Polar

W) =X+ s W=

WOl =X(N)+ Y () 6(f) = tan"" (M)
X(f)




2.2 Fourier transform and spectra

DEFNITION. The Inverse Fourier Transform (FT) of a waveform w(t) is

w(t)= [ W(He"" df

The functions w(t) and W(f) constitute a Fourier transform pair

Fourier transform o

Inverse Fourier transform

Time domain Frequency domain




2.2 Fourier Transform and Spectra

The waveform w(t) is Fourier transformable if it satisfies both
Dirichlet conditions:

<> Over any time interval of finite length, the function w(t) is single
valued with a finite number of maxima and minima, and the
number of discontinuities (if any) is finite.

<> w(t) is absolutely integrable. That is, f_ilw(t)ldt<oo

Above conditions are sufficient, but not necessary



2.2 Fourier Transform and Spectra

A weaker sufficient condition for the existence of the Fourier
transform is:

. 2
E =f_oo\w(t)\ dt < Finite Energy

Where E is the normalized energy.

This is the finite-energy condition that is satisfied by all physically
realizable forms.

Conclusion: All physical waveforms encountered in engineering
practice are Fourier transformable.



2.2 Fourier Transform and Spectra

Example 2-3. Spectrum of an exponential pulse

Let w(t) be a decaying exponential pulse that is switched on at t = 0. That is

Tif >0
w(t) =+ N e find its spectrum?

0 if t<0

0

1
Lod

1o magnitude

W(f)in dB

.
N -
s

o220

Angle of W(f)in degrees
o
o
©
=
r m 1
(7]
; (] |
i ]
8
| ]

- b

- L i
-1 -0.5 0 0.5



2.2 Fourier transform and spectra

Properties of Fourier Transforms

THEOREM. Spectral symmetry of real signals. If w(t) is real, then
W(-)=W(f)

The superscript asterisk denotes the conjugate operation.
x()=a+bj = x ({t)=a-bj

Properties of the Fourier transform:

» f, called frequency and having units of hertz, specifies the specific frequency
in the waveform w(t).

» The FT looks for the frequency fin the w(t) over all time. That is, over
—0 <<

» W(f) can be complex, even though w(t) is real
> If w(t) is real, then W(-f)=W(f)

17



2.2 Fourier transform and spectra

Example 2-4. Spectrum of a damped sinusoid

, , _ esinwt if t>0,T>0
Let damped sinusoid be given by (7)) =

0 if t<0

find its spectrum?

W(f)indB

605 500 550

Angle of W(f)in degrees

20850 500 550



2.2 Fourier transform and spectra

Properties of Fourier Transforms

Parseval’s Theorem:
[w.w,)dt = [W(HW, (fHdf
If w,(t)=w,(t)=w(t), then the theorem reduces to

Rayleight’s Energy Theorem:
JIm@[ di= [(W()f df

The energy calculated from the time domain is equal to
the energy calculated from the frequency domain

19



2.2 Fourier transform and spectra

Parseval’s Theorem and Energy Spectral Density

DEFNITION. The Energy Spectral Density (ESD) is defined for energy waveforms by
&) = Wl

where w(t) <> W(f).€(f) has units of joules per hertz.

We can see that the total normalized energy is given by the
area under ESD function

E = / &) df

—_)




2.2 Fourier transform and spectra
Some Fourier Transform Theorems

()penn;t;n

Function Fourier Transform
Lincarity aywy (1) + axws(r) a\Wi(f) + a;Wa(f)
Time delay w(t - 1) W(f) e
Scale change w(ar) d.% W (f)
la| a

Conjugation w'(t) W (-f)
Duality w(r) w(-f)
Real signal w(r) cos(w.r + 6) He!'W(f = f)+e!'W(f +£)]

frequency

translation

[w0(r) is real)
Complex signal w(t) e/ W(f - f)

frequency

translation
Bandpass signal Re{g(r) e/} s[GUf = f)+ G'(=f = )]
Differentiation dn:;f') (f2mf )"W([)
Integraion [ wnan (2mf) W) + IW(0) &)
Convolution w(r) » war) = I\ wy(A) Wilf)Wa(f)

<t = A) dA L5

Multiplication® wy(t)wy(r) Wi(f) » Wa(f) = j Wi(A) Wa(f — A) dA
Multiplication r"w(t) (~j2m)" ﬂ‘y(!)

hal anm

dfe



2.2 Fourier transform and spectra
Dirac Delta Function
DEFINATION. The Dirac delta function §( x)is defined by

oo A(x)
[ w30 di = w(O) ‘

>
where w(x) is any function that is continuous at x = 0.
An alternative definition of 6(x) is:

0O if x=0 y
5(x) = - and [6(x)dx=1
o if x=0 ‘°°




2.2 Fourier transform and spectra

Dirac Delta Function

The Sifting Property of 0(X) is

jw(x)é(x —x,)dt =w(x,)



2.2 Fourier transform and spectra
Unit Step Function

1 if >0 u(t)
u(t) =+ 1
0 if t<0
Time shift of the unit-step function
1 if t>t, u(t)
u(t—1t)=- 1

0 if t<t

1




2.2 Fourier transform and spectra

The relationship between unit-step and Delta functions

u(t) = jé()t)d)t —— o(t) = %

- Y




2.2 Fourier transform and spectra

Example 2-5. Spectrum of a sinusoid

Find the spectrum of a sinusoidal voltage waveform that has a frequency f, and
A peak value of A volts. Thatis Vv(f) = Asinw,t where w, =2xf, find its spectrum?

o(f)

+90)°

\WVif)
A Weight
t By 7 T /IS AR,
[ —
= .':‘l ]:

(a) Magnitude Spectrum

el

(b) Phase Spectrum ( 8,

0)
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2.2 Fourier transform and spectra

Rectangular Pulses

DEFINATION. The single rectangular pulse is denoted as [](*)

1. 1tlT /2
t A ’
[[(=)=+

r 0, 1tI>T/2

DEFINATION. Sa(*) Denoted the function Sa(x) = >

X



2.2 Fourier transform and spectra

Example 2-6. Spectrum of a rectangular pulse

Find the spectrum of a rectangular pulse w(t) = H(l‘/T)

(5)
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2.2 Fourier transform and spectra

Spectrum of a Rectangular Pulse
w(t)=H(%) < W(f)=T"Sa(/T)

Rectangular pulse 1s a time window.

FT 1s a sinc function, infinite frequency content.

Shrinking time axis causes stretching of frequency axis.
Signals cannot be both time-limited and bandwidth-limited.

Time Domain

n(7)

T

r 7
=

| —

— e

ﬁx/

E

Froquency Domaia

10T

05T

i\

I Sa(nTl))

T’

& |
?

Note the inverse relationship between the pulse width T and the zero crossing 1/T



2.2 Fourier transform and spectra

Triangular Pulses

DEFINATION. The single triangular function is denoted as A(®)

|21
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2.2 Fourier transform and spectra

Example 2-7. Spectrum of a triangular pulse

Find the spectrum of a triangular pulse w(¢)=A(¢/T)

1.0

1,07

W(t) = A(%) < W(f)=T"Sa*(xT)

I Sa’(=T/1)



2.2 Fourier transform and spectra

Convolution

DEFNITION. The convolution of a waveform w,(t) with a wave w,(t) to produce
a third waveform wy(t) is

w,(t)=w,(t)*w,(t)= jwl (Dw,(t-A)dA

= jwl (D, (—=(A=1))dA

Where o, (t)* w,(t)is a shorthand notation for this integration operation and * is read
“convolved with.”

The convolution can be obtained through three steps:

1. Time reversal of @, (t)to obtain @,(-A)
2. Time shifting of (), by t seconds to obtain w,(—(A -1))
3. Multiplying this result by ), to form the integrand w,(A)w,(—(A -1))

32



2.2 Fourier transform and spectra

Convolution of a rectangle with and exponential

w,(t)=e"u(t) and w,()=T](t-1)

w, (%)

1.2 12
08! | 0.8
= =
o6 =06
z z
.4+ 0.4
ol 0.2
1 0 1 2 3 4 5 6 -1
t

Overlapping Arpa = 4877087880e-1




2.2 Fourier transform and spectra

Example 2-8. Convolution of a rectangle with an exponential

let W](t)=H

and

w, () = e u(?) | -

Thgeew 2 ° - e A g wed e oo —— 34



2.3 Power spectral density and autocorrelation
function

Power spectral density

DEFNITION. The power spectral density (PSD) for a deterministic
power waveform is

T —>x

W, ()
T

p,(f)= lim(

Where w._ (1) <= W, (f)and p,(f) has units of watts per hertz.

Note:

1.) The PSD represents the normalized power of a waveform in its

frequency domain
2.) The PSD is always a real nonnegative function of frequency.

3.) The PSD is not sensitive to the phase spectrum of w(t).

35



2.3 Power spectral density and autocorrelation
function

The Normalized Average Power

P=<w’(t)>= [ P,(f)

This means the area under the PSD function is the normalized
average power

36



2.3 Power spectral density and autocorrelation function

Autocorrelation Function

DEFNITION. The Autocorrelation of a real (physical) waveform is

R, (D) =(w®w(t+T))= lim % if o(Hw(t +7)dt

Wiener-Khintchine Theorem: The PSD and the autocorrelation
function are Fourier transform pairs:

R (T)< P, (f)
The PSD can be evaluated by either of the following two methods:

< Direct method: by using the definition.

< Indirect method: by first evaluating the autocorrelation function
and then taking the FT.

P.(f)=SIR, (7)]

37




2.3 Power spectral density and autocorrelation function

The average power can be obtained by any of the
four techniques

P=<w'())>=W., = [P.(/)df = R,(0)

38



2.3 Power spectral density and autocorrelation function

Example 2-9. PSD of a sinusoid

let w(t)=sinwyt

Weight 1

= B A
I 4

Jo Io

{ﬂ
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2.4 Orthogonal Series Representation of Signal and Noise

Orthogonal Function

DEFNITION. Functions ¢,(t) and ¢, (t) are said to be orthogonal
with respect to each other over the intervala<t<b
if they satisfy the condition

b ) 0O nzm
Jo.0g,@d = =K,0,
a K n=m
0O nzm
(Snm =< -
1 n=m

< 68, is called the Kronecker delta function

< If the constants K, are all equal to 1 then the ¢, (t) are said to be
orthonormal functions.

40



2.4 Orthogonal Series Representation of Signal and Noise

Orthogonal Series

Assume that w(t) represents some practical waveform (signal, noise,
or signal-noise combination) that we wish to represent over the
interval a < t < b. Then we can obtain an equivalent orthogonal series
representation by using the following theorem.

THEOREM. w(t) can be represented over the interval (a,b) by the series
w(t)= ¥ a,g,(t)
where the orthogonal coefficients are given by

I po ‘
a =—/1| wit)p (t)dt
n ana (), (1)

And the range of n is over the integer values that correspond to the

subscripts that were used to denote the orthogonal function in the
complete orthogonal set



2.4 Orthogonal Series Representation of Signal and Noise

Application of Orthogonal Series

> Itis also possible to generate w(t) from the ¢,(t) functions and the coefficients a.

> In this case, w(t) is approximated by using a reasonable number of the ¢,(t) functions.

g c

1 ‘ |~ w(t) is realized by
F a1 ol s adding weighted
B Kt T 24 versions of
orthogonal
= \ 3 ) functions
Chink
= n.uh-":\ >

Figure 2-10  Wavelons synthesis sung orthogoml functions 42



2.5 Fourier Series

Complex Fourier Series

The complex Fourier series uses the orthogonal exponential function

THEOREM. A physical waveform (i.e. finite energy) may be represented
over the interval a < t < a+T, by the complex exponential Fourier series

0o

W(t) _ E Cnejna)ot

n=—0o0

where the complex (phasor) Fourier coefficient are
1 a+T, —inw
c, =_f "w(t)e ™" dt
7’;) a

and where @, =27 f, = Z_Jr

1

43



2.5 Fourier Series

Complex Fourier Series

0o

. 1 a+1y _inw
w(t) = E c e’ C, = T f ) w(t)e ™" dt
0

n=—OO

< C, is the Fourier Series. In general, it is a complex number. The Fourier coefficient
C, is equivalent to the DC value of the waveform w(t).

< If the waveform w(t) is periodic with period T, this Fourier series representation
Is valid over all time.

<> For this case of periodic waveforms, the choice of a is arbitrary and is usually
taken to be a=0or a =-T0/2 for mathematical convenience.

< The frequency f,= 1/T,is said to be the fundamental frequency and the

frequency nf,is said to be the nth harmonic frequency, when n>1.
44



2.5 Fourier Series

Some Properties of the Complex Fourier Series
1. If w(r) 1s real,

2. I wd) s real and even [re., wde) = wi 1)),
Imicy] = 0O
3. If wxdt) 15 real and odd [re, wdt) = —wl(-1)],
Refiral = 0
4. Parseval’s theorem 15

' eiT,

L[ ke =S e

,Ou L R S

45



2.5 Fourier Series

Some Properties of the Complex Fourier Series

5. The complex Fourier series coefficients of a real waveform are related to the quadrature
Fourier series coefficients by

Cﬂ=< a()e n=0
—a_,,-i-j%b_,,. n<0

6. The complex Fourier series coefficients of a real waveform are related to the polar
Fourier series coefficients by

(%D{qo,,. n=>0
C,,=< Do. n=>10

l :
\-’:):D_n ‘ ‘P—n? n < 0

Note that these properties for the complex Fourier series coefficients are similar

to those of Fourier transform as given Sec. 2-2
46



2.5 Fourier Series

Quadrature Fourier Series

The Quadrature Form of the Fourier series representing any physical waveform
w(t) over the interval a <t < a+T, is,

w(t)= E a, cos(nw,t) +E b, sin(nw,t)
n=0 n=0

Where the orthogonal functions are cos(nw,t) and sin(nw,t). we find that
these Fourier coefficients are given by

[ a+T,
—_ w(t) dt, n=2~0
sal TO a

ap = 4 - a+Tg

—

w(t) cos nwpt dt, n = 1

\TO a
f) a"!"TO
b, = w(t)sin nwgt dt, n > 0

Tb a

47



2.5 Fourier Series
Polar Fourier Series

The Polar Form of the Fourier series representing any physical waveform is,

w(t) =D, + EDn cos(nwyt+ @, )
n=1
Where w(t) is real and
D,, n=0 ,
a =4 b, =-D sing, n=1
D, cosep,, n=z=l

These two equations may be inverted, we got

dy, n=0 Co>s n=>0
D, = = @, =—tan"' | 2 |=ZLc,,n=1
a5+b’f, n=1 2|Cn|, n=1 a,

48



2.5 Fourier Series

What is the best form to use?

¥

ltnagonan
" u Complex marabyr ¢,
S Phasor Iy
- b,
>
vy
1 §
- .1 Ho -

Figure 2-11  Founer senes coefhicaents, n = |



2.5 Fourier Series

Line Spectra for Periodic Waveforms
THEOREM. If w(t) is periodic with period T, and is represented by

w(t) = i h(t —nT,) = i c e

n=-—oo n=-—0oo

-

where wi(r), M <%

h(t) =+

0, elsewhere

Then the Fourier coefficients are given by

¢, = fol (f,)

and where

H(f)=S[h(®)] andf,=1/T,

50



2.5 Fourier Series

THEOREM. For a periodic waveform w(t), the normalized power is

0

p=(r )= 3

n=—w

2

Cl’l

Where the {c,} are the complex Fourier coefficients for the waveform
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2.5 Fourier Series

THEOREM. For a periodic waveform w(t), the power spectral density
(PSD) is

P(f)=)

n=—00

“O(f -nfy)

Cl’l

Where T, = 1/f,is the period of the waveform, and the {c } are the
complex Fourier coefficients for the waveform
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