DEFNITION. The *Fourier Transform* (FT) of a waveform *w(t)* is

$$W(f) = \mathbf{f}[w(t)] = \lim_{T \to \infty} \int_{-\infty}^{\infty} [w(t)] e^{-j2\pi ft} dt$$

Where f[*] denotes the *Fourier transform* of [*], and *f* is the *frequency* parameter with units of hertz (i.e., 1/s). This defines the term frequency. It is the parameter *f* in the Fourier transform.

W(f) is also called a *two-sided spectrum* of *w(t)*, because both positive and Negative frequency components are obtained from previous equation.

What is Fourier and Fourier Transform???

What is Fourier and Fourier Transform ??

Fourier is a man, a genius

Name: Jean Baptiste Joseph Fourier
Year: 1768-1830
Nationality: French
Fields: Mathematician, physicist, historian

Fourier Series and Fourier Transformer

A weighted summation of *Sines* and *Cosines* of different frequencies can be used to represent periodic (*Fourier Series*), or non-periodic (*Fourier Transform*) functions.

Is this true?

People didn't believe that, including Lagrange, Laplace, Poisson, and other big wigs.

But, yes, this is true?

Possibly the greatest tool used in Engineering, one of the the fundaments of modern communication, control, signal processing, and etc.

Approximating a periodic signal with trigonometric functions

For a periodic signal $\tilde{x}(t)$ which is periodic with period T_0 has the property $\tilde{x}(t+T) = \tilde{x}(t)$

Periodic square-wave signal

Approximating a periodic signal with trigonometric functions

Approximating a periodic signal with trigonometric functions

Let's try a three-frequency approximation to $\tilde{x}(t)$ and see if the **approximate error** can be reduced.

 $\tilde{x}^{(3)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t)$ $\tilde{\varepsilon}_3(t) = \tilde{x}(t) - \tilde{x}^{(3)}(t) = \tilde{x}(t) - b_1 \sin(\omega_0 t) - b_2 \sin(2\omega_0 t) - b_3 \sin(3\omega_0 t)$ $\tilde{x}(t)$ 1.5 $\tilde{x}^{(3)}(t)$ $\tilde{\varepsilon}_{3}(t) = \tilde{x}(t) - \tilde{x}^{(3)}(t)$ 1 Α 0.5 0.5 r(t)e(t) -0.5 -0.5 -A -1.5 -1.5 2 3 2 0 0 3 1 t t

Approximating a periodic signal with trigonometric functions

Let's try a 15-frequency approximation to $\tilde{x}(t)$ and see if the **approximate error** can be reduced.

 $\tilde{x}^{(15)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots + b_{15} \sin(15\omega_0 t)$

Fourier Series

Trigonometric Fourier Series (TFS)

$$\widetilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t)$$
$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Exponential Fourier Series (EFS)

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jkw_0 t}$$

Fourier Transform

A non-periodic signal x(t): x(t)Periodic extension $\tilde{x}(t)$ of the signal x(t): $\tilde{x}(t)$ T_0 $-T_{i}$ $Period = T_0$ $\tilde{x}(t) = \ldots + x(t + T_0) + x(t) + x(t - T_0) + x(t - 2T_0) + \ldots$

$$\hat{x}\left(t
ight)=\sum_{k=-\infty}^{\infty}x\left(t-kT_{0}
ight)$$

2.2 Fourier transform and spectra Fourier Transform for continuous-time signals

Fourier Transform (Forward Transform)

$$W(f) = \Im[w(t)] = \int_{-\infty}^{\infty} [w(t)] e^{-j2\pi ft} dt$$

Inverse Fourier Transform (Inverse Transform)

$$w(t) = \Im^{-1}[w(t)] = \int_{-\infty}^{\infty} [W(f)] e^{j2\pi ft} dt$$

Alternative Evaluation Techniques for FT Integral

- \diamond Direct integration.
- ♦ Tables of Fourier transforms or Laplace transforms.
- \diamond FT theorems.
- Superposition to break the problem into two or more simple problems.
- \diamond Differentiation or integration of w(t).
- Numerical integration of the FT integral on the PC via MATLAB or MathCAD integration functions.
- ♦ Fast Fourier transform (FFT) on the PC via MATLAB or MathCAD FFT functions.

DEFNITION. The *Fourier Transform* (FT) of a waveform *w(t)* is

$$W(f) = \Im[w(t)] = \lim_{T \to \infty} \int_{-\infty}^{\infty} [w(t)] e^{-j2\pi ft} dt$$

W(f) is a complex function of frequency, and can therefore be represented in as

DEFNITION. The *Inverse Fourier Transform* (FT) of a waveform *w(t)* is

$$w(t) = \int_{-\infty}^{\infty} W(f) e^{j2\pi ft} df$$

The functions **w(t)** and **W(f)** constitute a **Fourier transform pair**

The waveform w(t) is Fourier transformable if it satisfies both **Dirichlet conditions:**

- Over any time interval of finite length, the function w(t) is single valued with a finite number of maxima and minima, and the number of discontinuities (if any) is finite.
- ♦ w(t) is absolutely integrable. That is, $\int_{-\infty}^{\infty} |w(t)| dt < \infty$

Above conditions are sufficient, but not necessary

A weaker sufficient condition for the existence of the Fourier transform is:

$$E = \int_{-\infty}^{\infty} |w(t)|^2 dt < \infty$$
 Finite Energy

Where *E* is the **normalized energy**.

This is the **finite-energy condition** that is satisfied by all physically realizable forms.

Conclusion: All physical waveforms encountered in engineering practice are **Fourier transformable**.

Example 2-3. Spectrum of an exponential pulse

Let w(t) be a decaying exponential pulse that is switched on at t = 0. That is

Properties of Fourier Transforms

THEOREM. Spectral symmetry of real signals. If w(t) is real, then

 $W(-f) = W^*(f)$

The superscript asterisk denotes the **conjugate** operation.

$$x(t) = a + bj \implies x^*(t) = a - bj$$

Properties of the Fourier transform:

- *f*, called frequency and having units of hertz, specifies the specific frequency in the waveform w(t).
- > The FT looks for the frequency f in the w(t) over all time. That is, over

 $-\infty < t < \infty$

- W(f) can be complex, even though w(t) is real
- $\succ \text{ If } w(t) \text{ is } real, \text{ then } W(-f) = W^*(f)$

Example 2-4. Spectrum of a damped sinusoid

Properties of Fourier Transforms

Parseval's Theorem:

$$\int_{-\infty}^{\infty} w_1(t) w_2^*(t) dt = \int_{-\infty}^{\infty} W_1(f) W_2^*(f) df$$

If $w_1(t) = w_2(t) = w(t)$, then the theorem reduces to

Rayleight's Energy Theorem:

$$\int_{-\infty}^{\infty} \left| w_1(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| W_1(f) \right|^2 df$$

The energy calculated from the time domain is equal to the energy calculated from the frequency domain

Parseval's Theorem and Energy Spectral Density

DEFNITION. The *Energy Spectral Density* (ESD) is defined for energy waveforms by $\mathscr{C}(f) = |W(f)|^2$

where $w(t) \leftrightarrow W(f)$. $\mathscr{E}(f)$ has units of joules per hertz.

We can see that the total normalized energy is given by the area under ESD function

$$E = \int_{-\infty}^{\infty} \mathscr{E}(f) df$$

Some Fourier Transform Theorems

Operation	Function	Fourier Transform
Linearity	$a_1w_1(t) + a_2w_2(t)$	$a_1W_1(f) + a_2W_2(f)$
Time delay	$w(t-T_d)$	$W(f) e^{-j\omega T_d}$
Scale change	w(at)	$\frac{1}{ a } W\left(\frac{f}{a}\right)$
Conjugation	$w^*(t)$	$W^*(-f)$
Duality	W(t)	w(-f)
Real signal frequency translation [w(t) is real]	$w(t)\cos(w_ct+\theta)$	$\frac{1}{2} \left[e^{j^{s}} W(f - f_{c}) + e^{-j^{s}} W(f + f_{c}) \right]$
Complex signal frequency translation	$w(t) e^{j \omega_b t}$	$W(f-f_c)$
Bandpass signal	$\operatorname{Re}\left\{g(t)e^{jw_{t}t}\right\}$	$\frac{1}{2}[G(f - f_c) + G^*(-f - f_c)]$
Differentiation	$\frac{d^n w(t)}{dt^n}$	$(j2\pi f)^{n}W(f)$
Integration	$\int_{-\infty}^{t} w(\lambda) d\lambda$	$(j2\pi f)^{-1}W(f) + \frac{1}{2}W(0) \ \delta(f)$
Convolution	$w_1(t) * w_2(t) = \int_{-\infty}^{\infty} w_1(\lambda)$	$W_1(f)W_2(f)$
	$\cdot w_2(t-\lambda) d\lambda$	6 N
Multiplication ^b	$w_1(t)w_2(t)$	$W_1(f) * W_2(f) = \int_{-\infty}^{\infty} W_1(\lambda) W_2(f-\lambda) d\lambda$
Multiplication	$t^n w(t)$	$(-j2\pi)^{-n}\frac{d^nW(f)}{df^n}$

Dirac Delta Function

DEFINATION. The *Dirac delta function* $\delta(x)$ is defined by

$$\int_{-\infty}^{\infty} w(x)\delta(x)dt = w(0)$$

where w(x) is any function that is continuous at x = 0. An alternative definition of $\delta(x)$ is:

$$\delta(x) = \begin{cases} 0 & if \quad x \neq 0 \\ \infty & if \quad x = 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

Dirac Delta Function

The **Sifting Property of** $\delta(x)$ is

$$\int_{-\infty}^{\infty} w(x)\delta(x-x_0)dt = w(x_0)$$

Unit Step Function

Time shift of the unit-step function

$$u(t - t_{1}) = \begin{cases} 1 & if \quad t > t_{1} \\ 0 & if \quad t < t_{1} \\ & & \\$$

The **relationship** between *unit-step* and *Delta* functions

Example 2-5. Spectrum of a sinusoid

Find the spectrum of a sinusoidal voltage waveform that has a frequency f_0 and A peak value of A volts. That is $v(t) = A \sin \omega_0 t$ where $\omega_0 = 2\pi f_0$ find its spectrum?

(a) Magnitude Spectrum

(b) Phase Spectrum ($\theta_0 = 0$)

Rectangular Pulses

DEFINATION. The single *rectangular pulse* is denoted as $\prod(\bullet)$

$$\prod \left(\frac{t}{T}\right) \stackrel{\Delta}{=} \begin{cases} 1, |t| < T/2 \\ 0, |t| > T/2 \end{cases}$$

DEFINATION. $Sa(\bullet)$ Denoted the function $Sa(x) = \frac{\sin x}{x}$

Example 2-6. Spectrum of a rectangular pulse

Find the spectrum of a rectangular pulse $w(t) = \prod (t/T)$

Spectrum of a Rectangular Pulse $w(t) = \Pi\left(\frac{t}{T}\right) \Leftrightarrow W(f) = T \cdot Sa(fT)$

- Rectangular pulse is a time window.
- FT is a sinc function, infinite frequency content.
- Shrinking time axis causes stretching of frequency axis.
- Signals cannot be both time-limited and bandwidth-limited.

Note the inverse relationship between the pulse width T and the zero crossing 1/T

Triangular Pulses

DEFINATION. The single *triangular function* is denoted as $\Lambda(\bullet)$

$$\Lambda(\frac{t}{T}) \stackrel{\Delta}{=} \begin{cases} 1 - \frac{|t|}{T}, & |t| \le T \\ 0, & |t| > T \end{cases}$$

Example 2-7. Spectrum of a triangular pulse

Find the spectrum of a triangular pulse $w(t) = \Lambda(t/T)$

$$w(t) = \Lambda\left(\frac{t}{T}\right) \Leftrightarrow W(f) = T \cdot Sa^2(\pi fT)$$

31

Convolution

DEFNITION. The *convolution* of a waveform $w_1(t)$ with a wave $w_2(t)$ to produce a third waveform $w_3(t)$ is $\omega_2(t) = \omega_1(t) * \omega_2(t) = \int_{-\infty}^{\infty} \omega_1(\lambda) \omega_2(t-\lambda) d\lambda$

$$= \bigcup_{n=0}^{\infty} \omega_n(\lambda) \omega_2(1-\lambda) d\lambda$$
$$= \int_{-\infty}^{\infty} \omega_n(\lambda) \omega_2(-(\lambda-t)) d\lambda$$

Where $\omega_1(t) * \omega_2(t)$ is a shorthand notation for this integration operation and * is read "convolved with."

The *convolution* can be obtained through three steps:

- **1.** Time reversal of $\omega_2(t)$ to obtain $\omega_2(-\lambda)$
- **2.** Time shifting of ω_2 by t seconds to obtain $\omega_2(-(\lambda t))$
- **3.** Multiplying this result by ω_1 to form the integrand $\omega_1(\lambda)\omega_2(-(\lambda-t))$

2.2 Fourier transform and spectra Convolution of a rectangle with and exponential $\omega_1(t) = e^{-t}u(t)$ and $\omega_2(t) = \prod(t-1)$ 1.2 1.2 1 0.8 0.8 0.8 w2⁽⁻λ) (Y)¹ 0.6 (≺)² 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0____ 0_-1 0 2 3 4 5 6 2 3 t 4 1 5 6 0 1 2 3 4 5 6 0 1 0 Overlapping Area = .4877057550e-1 2 1.4 6

33

Example 2-8. Convolution of a rectangle with an exponential

2.3 Power spectral density and autocorrelation function

Power spectral density

DEFNITION. The *power spectral density* (*PSD*) for a deterministic power waveform is

$$p_{w}(f) = \lim_{T \to \infty} \left(\frac{\left| W_{r}(f) \right|^{2}}{T} \right)$$

Where $w_T(t) \Leftrightarrow W_T(f)$ and $p_w(f)$ has units of watts per hertz.

Note:

1.) The **PSD** represents the *normalized power* of a waveform in its

frequency domain

- 2.) The **PSD** is always a *real nonnegative* function of frequency.
- 3.) The **PSD** is *not sensitive* to the phase spectrum of w(t).

2.3 Power spectral density and autocorrelation function

The Normalized Average Power

$$P = \langle w^2(t) \rangle = \int_{-\infty}^{\infty} P_w(f)$$

This means the **area** under the **PSD function** is the **normalized average power**

2.3 Power spectral density and autocorrelation function Autocorrelation Function

DEFNITION. The *Autocorrelation* of a real (physical) waveform is

$$R_{w}(\tau) = \left\langle \omega(t)\omega(t+\tau) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \omega(t)\omega(t+\tau) dt$$

Wiener-Khintchine Theorem: The **PSD** and the **autocorrelation** function are Fourier transform pairs:

$$R_{w}(\tau) \Leftrightarrow P_{w}(f)$$

The **PSD** can be evaluated by either of the following two methods:

- Direct method: by using the definition.
- Indirect method: by first evaluating the autocorrelation function and then taking the FT.

$$P_{w}(f) = \Im[R_{w}(\tau)]$$

2.3 Power spectral density and autocorrelation function

The average power can be obtained by any of the four techniques

$$P = \langle w^{2}(t) \rangle = W_{rms}^{2} = \int_{-\infty}^{\infty} P_{w}(f) df = R_{W}(0)$$

2.3 Power spectral density and autocorrelation function

Example 2-9. PSD of a sinusoid

let $w(t) = \sin \omega_0 t$

2.4 Orthogonal Series Representation of Signal and Noise Orthogonal Function

DEFNITION. Functions $\varphi_n(t)$ and $\varphi_m(t)$ are said to be *orthogonal* with respect to each other over the interval a < t < b if they satisfy the condition

$$\int_{a}^{b} \varphi_{n}(t)\varphi_{m}^{*}(t)dt = \begin{cases} 0 & n \neq m \\ K_{n} & n = m \end{cases} = K_{n}\delta_{nm}$$
$$\delta_{nm} = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$

- $\diamond \delta_{nm}$ is called the *Kronecker delta function*
- ♦ If the constants K_n are all equal to 1 then the $\varphi_n(t)$ are said to be orthonormal functions.

2.4 Orthogonal Series Representation of Signal and Noise

Orthogonal Series

Assume that w(t) represents some practical waveform (signal, noise, or signal-noise combination) that we wish to represent over the interval a < t < b. Then we can obtain an equivalent orthogonal series representation by using the following theorem.

THEOREM. w(t) can be represented over the interval (a,b) by the series

$$w(t) = \sum_{n} a_{n} \varphi_{n}(t)$$

where the *orthogonal coefficients* are given by

$$a_n = \frac{1}{K_n} \int_a^b w(t) \varphi_n^*(t) dt$$

And the range of *n* is over the integer values that correspond to the subscripts that were used to denote the orthogonal function in the complete orthogonal set

2.4 Orthogonal Series Representation of Signal and Noise Application of Orthogonal Series

> It is also possible to generate w(t) from the $\varphi_i(t)$ functions and the coefficients a_i .

> In this case, w(t) is approximated by using a reasonable number of the $\phi_i(t)$ functions.

Figure 2-10 Waveform synthesis using orthogonal functions.

Complex Fourier Series

The complex Fourier series uses the orthogonal exponential function

THEOREM. A *physical waveform* (i.e. finite energy) may be represented over the interval $a < t < a+T_0$ by the complex exponential Fourier series

$$w(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$$

where the complex (phasor) Fourier coefficient are

$$c_n = \frac{1}{T_0} \int_a^{a+T_0} w(t) e^{-jnw_0 t} dt$$

and where $\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$

Complex Fourier Series

$$w(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \quad \longleftrightarrow \quad c_n = \frac{1}{T_0} \int_a^{a+T_0} w(t) e^{-jnw_0 t} dt$$

- c_n is the Fourier Series. In general, it is a complex number. The Fourier coefficient C_0 is equivalent to the DC value of the waveform w(t).
- ♦ If the waveform w(t) is periodic with period T_o , this Fourier series representation Is valid over all time.
- ♦ For this case of periodic waveforms, the choice of a is arbitrary and is usually taken to be a = 0 or a = -T0/2 for mathematical convenience.
- ♦ The frequency $f_0 = 1/T_0$ is said to be the *fundamental frequency* and the frequency nf_0 is said to be the nth harmonic frequency, when n>1.

Some Properties of the Complex Fourier Series

1. If w(t) is real,

$$c_n = c_{-n}^*$$

2. If
$$w(t)$$
 is real and even [i.e., $w(t) = w(-t)$],

$$Im[c_n] = 0$$

3. If
$$w(t)$$
 is real and odd [i.e., $w(t) = -w(-t)$],
Re $[c_n] = 0$

$$\frac{1}{T_0} \int_a^{a+T_0} |w(t)|^2 dt = \sum_{n=-\infty}^{n=\infty} |c_n|^2$$

Some Properties of the Complex Fourier Series

 The complex Fourier series coefficients of a real waveform are related to the quadrature Fourier series coefficients by

$$c_n = \begin{cases} \frac{1}{2}a_n - j\frac{1}{2}b_n, & n > 0\\ a_0, & n = 0\\ \frac{1}{2}a_{-n} + j\frac{1}{2}b_{-n}, & n < 0 \end{cases}$$

 The complex Fourier series coefficients of a real waveform are related to the polar Fourier series coefficients by

$$c_{n} = \begin{cases} \frac{1}{2} D / \varphi_{n}, & n > 0\\ D_{0}, & n = 0\\ \frac{1}{2} D_{-n} / \varphi_{-n}, & n < 0 \end{cases}$$

Note that these properties for the complex Fourier series coefficients are similar to those of Fourier transform as given Sec. 2-2

Quadrature Fourier Series

The Quadrature Form of the Fourier series representing any physical waveform w(t) over the interval $a < t < a+T_0$ is,

$$w(t) = \sum_{n=0}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=0}^{\infty} b_n \sin(n\omega_0 t)$$

Where the **orthogonal functions** are **cos(nw₀t)** and **sin(nw₀t)**. we find that these **Fourier coefficients** are given by

$$a_n = \begin{cases} \frac{1}{T_0} \int_a^{a+T_0} w(t) \, dt, & n = 0\\ \frac{2}{T_0} \int_a^{a+T_0} w(t) \cos n\omega_0 t \, dt, & n \ge 1 \end{cases}$$

$$b_n = \frac{2}{T_0} \int_a^{a+T_0} w(t) \sin n\omega_0 t \, dt, \quad n > 0$$

Polar Fourier Series

The Polar Form of the Fourier series representing any physical waveform is,

$$w(t) = D_0 + \sum_{n=1}^{\infty} D_n \cos(n\omega_0 t + \varphi_n)$$

Where w(t) is real and

$$a_n = \begin{cases} D_0, \quad n = 0 \\ D_n \cos \varphi_n, \quad n \ge 1 \end{cases} \qquad b_n = -D_n \sin \varphi_n \qquad n \ge 1 \end{cases}$$

These two equations may be inverted, we got

$$D_{n} = \begin{cases} a_{0}, \quad n = 0 \\ \sqrt{a_{n}^{2} + b_{n}^{2}}, \quad n \ge 1 \end{cases} = \begin{cases} c_{0}, \quad n = 0 \\ 2 \mid c_{n} \mid, \quad n \ge 1 \end{cases} \qquad \varphi_{n} = -\tan^{-1} \left(\frac{b_{n}}{a_{n}}\right) = \angle c_{n}, n \ge 1$$

What is the best form to use?

Line Spectra for Periodic Waveforms

THEOREM. If *w*(*t*) is periodic with period *T*₀ and is represented by

$$w(t) = \sum_{n=-\infty}^{\infty} h(t - nT_0) = \sum_{n=-\infty}^{\infty} c_n e^{jnw_0 t}$$

$$h(t) = \begin{cases} w(t), & |t| < \frac{T_0}{2} \\ 0, & elsewhere \end{cases}$$

where

Then the Fourier coefficients are given by

$$c_n = f_0 H(nf_0)$$

and where

$$H(f) = \Im[h(t)] \quad \text{and} f_0 = 1/T_0$$

50

THEOREM. For a periodic waveform *w(t)*, the *normalized power* is

$$P_{w} = \left\langle w^{2}(t) \right\rangle = \sum_{n=-\infty}^{\infty} \left| c_{n} \right|^{2}$$

Where the $\{c_n\}$ are the complex Fourier coefficients for the waveform

THEOREM. For a periodic waveform *w(t)*, the *power spectral density (PSD)* is

$$P(f) = \sum_{n=-\infty}^{\infty} \left| c_n \right|^2 \delta(f - nf_0)$$

Where $T_0 = 1/f_0$ is the period of the waveform, and the $\{c_n\}$ are the complex Fourier coefficients for the waveform