2.2 Fourier transform and spectra

DEFNITION. The Fourier Transform (FT) of a waveform $\boldsymbol{w}(\boldsymbol{t})$ is

$$
W(f)=\mathrm{f}[w(t)]=\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty}[w(t)] e^{-j 2 \pi f t} d t
$$

Where $\mathrm{f}\left[{ }^{*}\right]$ denotes the Fourier transform of [*], and f is the frequency parameter with units of hertz (i.e., 1/s). This defines the term frequency. It is the parameter f in the Fourier transform.
$W(f)$ is also called a two-sided spectrum of $w(t)$, because both positive and Negative frequency components are obtained from previous equation.

What is Fourier and Fourier Transform???

2.2 Fourier transform and spectra

What is Fourier and Fourier Transform ??

Fourier is a man, a genius

Name: Jean Baptiste Joseph Fourier
Year: 1768-1830
Nationality: French
Fields: Mathematician, physicist, historian

2.2 Fourier transform and spectra

Fourier Series and Fourier Transformer

A weighted summation of Sines and Cosines of different frequencies can be used to represent periodic (Fourier Series), or non-periodic (Fourier Transform) functions.

Is this true?
People didn't believe that, including Lagrange, Laplace, Poisson, and other big wigs.

But, yes, this is true?

Possibly the greatest tool used in Engineering, one of the the fundaments of modern communication, control, signal processing, and etc.

2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions
For a periodic signal $\tilde{x}(t)$ which is periodic with period T_{0} has the property

$$
\tilde{x}(t+T)=\tilde{x}(t)
$$

Periodic square-wave signal

2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions
The best approximation to $\tilde{x}(t)$ using only one trigonometric function is

$$
\tilde{x}^{(1)}(t)=\frac{4 A}{\pi} \sin \left(\omega_{0} t\right)
$$

2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions
Let's try a three-frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\begin{gathered}
\tilde{x}^{(3)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+b_{3} \sin \left(3 \omega_{0} t\right) \\
\tilde{\varepsilon}_{3}(t)=\tilde{x}(t)-\tilde{x}^{(3)}(t)=\tilde{x}(t)-b_{1} \sin \left(\omega_{0} t\right)-b_{2} \sin \left(2 \omega_{0} t\right)-b_{3} \sin \left(3 \omega_{0} t\right) \\
\tilde{x}(t)
\end{gathered}
$$

2.2 Fourier transform and spectra

Fourier Series

Approximating a periodic signal with trigonometric functions
Let's try a 15-frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\tilde{x}^{(15)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+\ldots . \quad+b_{15} \sin \left(15 \omega_{0} t\right)
$$

2.2 Fourier transform and spectra

Fourier Series

Trigonometric Fourier Series (TFS)

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k w_{0} t}
$$

2.2 Fourier transform and spectra

Fourier Transform

A non-periodic signal $z(t)$:

Periodic extension $\bar{x}(t)$ of the signal $x(t)$:

$$
\begin{gathered}
z(t)=\ldots+z\left(t+T_{0}\right)+x(t)+x\left(t-T_{0}\right)+z\left(t-2 T_{0}\right)+\ldots \\
z(t)=\sum_{k=-\infty}^{\infty} x\left(t-k T_{0}\right)
\end{gathered}
$$

2.2 Fourier transform and spectra

Fourier Transform for continuous-time signals

Fourier Transform (Forward Transform)

$$
W(f)=\mathfrak{J}[w(t)]=\int_{-\infty}^{\infty}[w(t)] e^{-j 2 \pi f t} d t
$$

Inverse Fourier Transform (Inverse Transform)

$$
w(t)=\mathfrak{S}^{-1}[w(t)]=\int_{-\infty}^{\infty}[W(f)] e^{j 2 \pi f t} d t
$$

2.2 Fourier transform and spectra

Alternative Evaluation Techniques for FT Integral

\triangleleft Direct integration.
\diamond Tables of Fourier transforms or Laplace transforms.
\diamond FT theorems.
\diamond Superposition to break the problem into two or more simple problems.
\diamond Differentiation or integration of $w(t)$.
\diamond Numerical integration of the FT integral on the PC via MATLAB or MathCAD integration functions.
\diamond Fast Fourier transform (FFT) on the PC via MATLAB or MathCAD FFT functions.

2.2 Fourier transform and spectra

DEFNITION. The Fourier Transform (FT) of a waveform $w(t)$ is

$$
W(f)=\mathfrak{I}[w(t)]=\lim _{T \rightarrow \infty} \int_{-\infty}^{\infty}[w(t)] e^{-j 2 \pi f t} d t
$$

$W(f)$ is a complex function of frequency, and can therefore be represented in as

Quadrature / Cartesian

$$
W(f)=X(f)+j Y(f)
$$

$$
|W(f)|=\sqrt{X^{2}(f)+Y^{2}(f)}
$$

Magnitude-Phase / Polar

$$
\begin{gathered}
W(f)=|W(f)| e^{j \theta(f)} \\
\theta(f)=\tan ^{-1}\left(\frac{Y(f)}{X(f)}\right)
\end{gathered}
$$

2.2 Fourier transform and spectra

DEFNITION. The Inverse Fourier Transform (FT) of a waveform $\boldsymbol{w}(\boldsymbol{t})$ is

$$
w(t)=\int_{-\infty}^{\infty} W(f) e^{j 2 \pi t t} d f
$$

The functions $\boldsymbol{w}(\boldsymbol{t})$ and $\boldsymbol{W}(f)$ constitute a Fourier transform pair

Time domain
Frequency domain

2.2 Fourier Transform and Spectra

The waveform $w(t)$ is Fourier transformable if it satisfies both Dirichlet conditions:
\diamond Over any time interval of finite length, the function $w(t)$ is single valued with a finite number of maxima and minima, and the number of discontinuities (if any) is finite.
$\diamond \boldsymbol{w}(\boldsymbol{t})$ is absolutely integrable. That is, $\quad \int_{-\infty}^{\infty}|w(t)| d t<\infty$
Above conditions are sufficient, but not necessary

2.2 Fourier Transform and Spectra

A weaker sufficient condition for the existence of the Fourier transform is:

$$
E=\int_{-\infty}^{\infty}|w(t)|^{2} d t<\infty
$$

Finite Energy

Where E is the normalized energy.
This is the finite-energy condition that is satisfied by all physically realizable forms.

Conclusion: All physical waveforms encountered in engineering practice are Fourier transformable.

2.2 Fourier Transform and Spectra

Example 2-3. Spectrum of an exponential pulse

Let $w(t)$ be a decaying exponential pulse that is switched on at $t=0$. That is $w(t)=\left\{\begin{array}{ccc}e^{-t} & \text { if } & t>0 \\ 0 & \text { if } & t<0\end{array}\right.$ find its spectrum?

2.2 Fourier transform and spectra

Properties of Fourier Transforms

THEOREM. Spectral symmetry of real signals. If $w(t)$ is real, then

$$
W(-f)=W^{*}(f)
$$

The superscript asterisk denotes the conjugate operation.

$$
x(t)=a+b j \quad \Rightarrow \quad x^{*}(t)=a-b j
$$

Properties of the Fourier transform:
$>f$, called frequency and having units of hertz, specifies the specific frequency in the waveform $w(t)$.
$>$ The FT looks for the frequency f in the $w(t)$ over all time. That is, over

$$
-\infty<t<\infty
$$

$>W(f)$ can be complex, even though $w(t)$ is real
$>$ If $w(t)$ is real, then $W(-f)=W^{*}(f)$

2.2 Fourier transform and spectra

Example 2-4. Spectrum of a damped sinusoid

Let damped sinusoid be given by $\quad w(t)=\left\{\begin{array}{c}e^{-t / T} \sin \omega_{0} t \text { if } t>0, T>0 \\ 0 \text { if } t<0\end{array}\right.$
find its spectrum?

2.2 Fourier transform and spectra

Properties of Fourier Transforms

Parseval's Theorem:

$$
\int_{-\infty}^{\infty} w_{1}(t) w_{2}^{*}(t) d t=\int_{-\infty}^{\infty} W_{1}(f) W_{2}^{*}(f) d f
$$

If $w_{1}(t)=w_{2}(t)=w(t)$, then the theorem reduces to

Rayleight's Energy Theorem:

$$
\int_{-\infty}^{\infty}\left|w_{1}(t)\right|^{2} d t=\int_{-\infty}^{\infty}\left|W_{1}(f)\right|^{2} d f
$$

The energy calculated from the time domain is equal to the energy calculated from the frequency domain

2.2 Fourier transform and spectra

Parseval's Theorem and Energy Spectral Density

DEFNITION. The Energy Spectral Density (ESD) is defined for energy waveforms by

$$
\mathscr{8}(f)=|W(f)|^{2}
$$

where $w(t) \leftrightarrow W(f) . \mathscr{E}(f)$ has units of joules per hertz.

We can see that the total normalized energy is given by the area under ESD function

$$
E=\int_{-\infty}^{\infty} \mathscr{E}(f) d f
$$

2.2 Fourier transform and spectra

Some Fourier Transform Theorems

Operation	Function	Fourier Transform
Linearity	$a_{1} w_{1}(t)+a_{2} w_{2}(t)$	$a_{1} W_{1}(f)+a_{2} W_{2}(f)$
Time delay	$w\left(t-T_{d}\right)$	$W(f) e^{-j \omega \sigma_{i}}$
Scale change	$w(a t)$	$\frac{1}{\|a\|} W\left(\frac{f}{a}\right)$
Conjugation	$w^{*}(t)$	$W^{\prime \prime}(-f)$
Duality	$W(t)$	$w(-f)$
Real signal frequency translation [$w(t)$ is real]	$w(t) \cos \left(w_{c} t+\theta\right)$	$\frac{1}{2}\left[e^{i} W W\left(f-f_{c}\right)+e^{-J^{*} W}\left(f+f_{c}\right)\right]$
Complex signal frequency translation	$w(t) e^{j e s t}$	$W\left(f-f_{c}\right)$
Bandpass signal	$\operatorname{Re}\left\{g(t) e^{j m_{t} t}\right\}$	${ }_{2}^{1}\left[G\left(f-f_{c}\right)+G^{+}\left(-f-f_{c}\right)\right]$
Differentiation	$\frac{d^{n} w(t)}{d t^{n}}$	$(j 2 \pi f)^{n} W(f)$
Integration	$\int_{-\infty}^{1} w(\lambda) d \lambda$	$(j 2 \pi f)^{-1} W(f)+\frac{1}{2} W(0) \delta(f)$
Convolution	$\begin{aligned} & w_{1}(t) * w_{2}(t)=\int_{-\infty}^{\infty} w_{1}(\lambda) \\ & \cdot w_{2}(t-\lambda) d \lambda \end{aligned}$	$W_{1}(f) W_{2}(f)$
Multiplication ${ }^{\text {b }}$	$w_{1}(t) w_{2}(t)$	$W_{1}(f) * W_{2}(f)=\int_{-\infty}^{\infty} W_{1}(\lambda) W_{2}(f-\lambda) d \lambda$
Multiplication	$t^{n} w(t)$	$(-j 2 \pi)^{-n} \frac{d^{n} W(f)}{d f^{n}}$

2.2 Fourier transform and spectra

Dirac Delta Function

DEFINATION. The Dirac delta function $\delta(x)$ is defined by

$$
\int_{-\infty}^{\infty} w(x) \delta(x) d t=w(0)
$$

where $w(x)$ is any function that is continuous at $x=0$. An alternative definition of $\delta(x)$ is:

$$
\delta(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \neq 0 \\
\infty & \text { if } & x=0
\end{array} \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(x) d x=1\right.
$$

2.2 Fourier transform and spectra

Dirac Delta Function

The Sifting Property of $\delta(x)$ is

$$
\int_{-\infty}^{\infty} w(x) \delta\left(x-x_{0}\right) d t=w\left(x_{0}\right)
$$

2.2 Fourier transform and spectra

Unit Step Function

$$
u(t)=\left\{\begin{array}{lll}
1 & \text { if } & t>0 \\
0 & \text { if } & t<0
\end{array}\right.
$$

Time shift of the unit-step function

$$
u\left(t-t_{1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & t>t_{1} \\
0 & \text { if } & t<t_{1}
\end{array}\right.
$$

2.2 Fourier transform and spectra

The relationship between unit-step and Delta functions

$$
u(t)=\int_{-\infty}^{\infty} \delta(\lambda) d \lambda \quad \Longleftrightarrow \quad \delta(t)=\frac{d u}{d t}
$$

2.2 Fourier transform and spectra

Example 2-5. Spectrum of a sinusoid

Find the spectrum of a sinusoidal voltage waveform that has a frequency f_{0} and A peak value of A volts. That is $v(t)=A \sin \omega_{0} t$ where $\omega_{0}=2 \pi f_{0}$ find its spectrum?

(a) Magnitude Spectrum

(b) Phase Spectrum $\left(\theta_{0}=0\right)$

2.2 Fourier transform and spectra

Rectangular Pulses

DEFINATION. The single rectangular pulse is denoted as $\Pi(\cdot)$

$$
\Pi\left(\frac{t}{T}\right) \stackrel{\Delta}{=} \begin{cases}1, & |t|<T / 2 \\ 0, & |t|>T / 2\end{cases}
$$

DEFINATION. $S a(\bullet)$ Denoted the function $S a(x)=\frac{\sin x}{x}$

2.2 Fourier transform and spectra

Example 2-6. Spectrum of a rectangular pulse

Find the spectrum of a rectangular pulse $w(t)=\prod(t / T)$

(b) $\mathrm{Sa}(\mathrm{x})$ Function

2.2 Fourier transform and spectra

Spectrum of a Rectangular Pulse

$$
w(t)=\Pi\left(\frac{t}{T}\right) \Leftrightarrow W(f)=T \cdot S a(f T)
$$

- Rectangular pulse is a time window.
- FT is a sinc function, infinite frequency content.
- Shrinking time axis causes stretching of frequency axis.
- Signals cannot be both time-limited and bandwidth-limited.

Note the inverse relationship between the pulse width T and the zero crossing 1/T

2.2 Fourier transform and spectra

Triangular Pulses

DEFINATION. The single triangular function is denoted as $\Lambda(\bullet)$

$$
\Lambda\left(\frac{t}{T}\right) \stackrel{\Delta}{=}\left\{\begin{array}{c}
1-\frac{|t|}{T}, \quad|t| \leq T \\
0, \quad|t|>T
\end{array}\right.
$$

2.2 Fourier transform and spectra

Example 2-7. Spectrum of a triangular pulse

Find the spectrum of a triangular pulse $w(t)=\Lambda(t / T)$

2.2 Fourier transform and spectra

Convolution

DEFNITION. The convolution of a waveform $w_{1}(t)$ with a wave $w_{2}(t)$ to produce a third waveform $\omega_{3}(t)$ is

$$
\begin{aligned}
\omega_{3}(t)=\omega_{1}(t) * \omega_{2}(t) & =\int_{-\infty}^{\infty} \omega_{1}(\lambda) \omega_{2}(t-\lambda) d \lambda \\
& =\int_{-\infty}^{\infty} \omega_{1}(\lambda) \omega_{2}(-(\lambda-t)) d \lambda
\end{aligned}
$$

Where $\omega_{1}(t) * \omega_{2}(t)$ is a shorthand notation for this integration operation and * is read "convolved with."

The convolution can be obtained through three steps:

1. Time reversal of $\omega_{2}(t)$ to obtain $\omega_{2}(-\lambda)$
2. Time shifting of ω_{2} by t seconds to obtain $\omega_{2}(-(\lambda-t))$
3. Multiplying this result by ω_{1} to form the integrand $\omega_{1}(\lambda) \omega_{2}(-(\lambda-t))$

2.2 Fourier transform and spectra

Convolution of a rectangle with and exponential

$$
\omega_{1}(t)=e^{-t} u(t) \quad \text { and } \quad \omega_{2}(t)=\prod(t-1)
$$

2.2 Fourier transform and spectra

Example 2-8. Convolution of a rectangle with an exponential

$$
\text { let } \quad w_{1}(t)=\Pi\left(\frac{t-\frac{1}{2} T}{T}\right)
$$

and

$$
w_{2}(t)=e^{-t / T} u(t)
$$

2.3 Power spectral density and autocorrelation function

Power spectral density

DEFNITION. The power spectral density (PSD) for a deterministic power waveform is

$$
p_{w}(f)=\lim _{T \rightarrow \infty}\left(\frac{\left|W_{r}(f)\right|^{2}}{T}\right)
$$

Where $w_{T}(t) \leftrightarrow W_{T}(f)$ and $p_{w}(f)$ has units of watts per hertz.
Note:
1.) The PSD represents the normalized power of a waveform in its frequency domain
2.) The PSD is always a real nonnegative function of frequency.
3.) The PSD is not sensitive to the phase spectrum of $w(t)$.

2.3 Power spectral density and autocorrelation function

The Normalized Average Power

$$
P=<w^{2}(t)>=\int_{-\infty}^{\infty} P_{w}(f)
$$

This means the area under the PSD function is the normalized average power

2.3 Power spectral density and autocorrelation function

Autocorrelation Function

DEFNITION. The Autocorrelation of a real (physical) waveform is

$$
R_{w}(\tau)=\langle\omega(t) \omega(t+\tau)\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \omega(t) \omega(t+\tau) d t
$$

Wiener-Khintchine Theorem: The PSD and the autocorrelation function are Fourier transform pairs:

$$
R_{w}(\tau) \leftrightarrow P_{w}(f)
$$

The PSD can be evaluated by either of the following two methods:
\diamond Direct method: by using the definition.
\diamond Indirect method: by first evaluating the autocorrelation function and then taking the FT.

$$
P_{w}(f)=\mathfrak{S}\left[R_{w}(\tau)\right]
$$

2.3 Power spectral density and autocorrelation function

The average power can be obtained by any of the four techniques

$$
P=<w^{2}(t)>=W_{r m s}^{2}=\int_{-\infty}^{\infty} P_{w}(f) d f=R_{W}(0)
$$

2.3 Power spectral density and autocorrelation function

Example 2-9. PSD of a sinusoid

let $w(t)=\sin \omega_{0} t$

2.4 Orthogonal Series Representation of Signal and Noise

Orthogonal Function

DEFNITION. Functions $\varphi_{n}(t)$ and $\varphi_{m}(t)$ are said to be orthogonal with respect to each other over the interval $a<t<b$ if they satisfy the condition

$$
\begin{gathered}
\int_{a}^{b} \varphi_{n}(t) \varphi_{m}^{*}(t) d t=\left\{\begin{array}{rr}
0 & n \neq m \\
K_{n} & n=m
\end{array}\right\}=K_{n} \delta_{n m} \\
\delta_{n m} \equiv\left\{\begin{array}{ll}
0 & n \neq m \\
1 & n=m
\end{array}\right\}
\end{gathered}
$$

$\diamond \delta_{n m}$ is called the Kronecker delta function
\diamond If the constants \boldsymbol{K}_{n} are all equal to 1 then the $\varphi_{n}(t)$ are said to be orthonormal functions.

2.4 Orthogonal Series Representation of Signal and Noise

Orthogonal Series

Assume that $\boldsymbol{w}(\boldsymbol{t})$ represents some practical waveform (signal, noise, or signal-noise combination) that we wish to represent over the interval $\boldsymbol{a}<\boldsymbol{t}<\boldsymbol{b}$. Then we can obtain an equivalent orthogonal series representation by using the following theorem.

THEOREM. $\boldsymbol{w}(\boldsymbol{t})$ can be represented over the interval $(\boldsymbol{a}, \boldsymbol{b})$ by the series

$$
w(t)=\sum_{n} a_{n} \varphi_{n}(t)
$$

where the orthogonal coefficients are given by

$$
a_{n}=\frac{1}{K_{n}} \int_{a}^{b} w(t) \varphi_{n}^{*}(t) d t
$$

And the range of \boldsymbol{n} is over the integer values that correspond to the subscripts that were used to denote the orthogonal function in the complete orthogonal set

2.4 Orthogonal Series Representation of Signal and Noise

Application of Orthogonal Series

- It is also possible to generate $\boldsymbol{w}(\boldsymbol{t})$ from the $\boldsymbol{\varphi}_{\boldsymbol{j}}(\boldsymbol{t})$ functions and the coefficients $\boldsymbol{a}_{\boldsymbol{j}}$.
- In this case, $\boldsymbol{w}(\boldsymbol{t})$ is approximated by using a reasonable number of the $\phi_{j}(t)$ functions.

$w(t)$ is realized by adding weighted versions of orthogonal functions

2.5 Fourier Series

Complex Fourier Series

The complex Fourier series uses the orthogonal exponential function
THEOREM. A physical waveform (i.e. finite energy) may be represented over the interval $\boldsymbol{a}<\boldsymbol{t}<\boldsymbol{a +} \boldsymbol{T}_{0}$ by the complex exponential Fourier series

$$
w(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t}
$$

where the complex (phasor) Fourier coefficient are

$$
\begin{aligned}
& \qquad c_{n}=\frac{1}{T_{0}} \int_{a}^{a+T_{0}} w(t) e^{-j n w_{0} t} d t \\
& \text { and where } \quad \omega_{0}=2 \pi f_{0}=\frac{2 \pi}{T_{0}}
\end{aligned}
$$

2.5 Fourier Series

Complex Fourier Series

$$
w(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t} \longleftrightarrow c_{n}=\frac{1}{T_{0}} \int_{a}^{a+T_{0}} w(t) e^{-j n \omega_{0} t} d t
$$

$\diamond \boldsymbol{C}_{n}$ is the Fourier Series. In general, it is a complex number. The Fourier coefficient \boldsymbol{C}_{0} is equivalent to the DC value of the waveform $\boldsymbol{w}(\boldsymbol{t})$.
\diamond If the waveform $\boldsymbol{w}(\boldsymbol{t})$ is periodic with period \boldsymbol{T}_{0}, this Fourier series representation Is valid over all time.
\diamond For this case of periodic waveforms, the choice of a is arbitrary and is usually taken to be $\mathrm{a}=0$ or $\mathrm{a}=-\mathrm{TO} / 2$ for mathematical convenience.
\diamond The frequency $f_{0}=1 / T_{0}$ is said to be the fundamental frequency and the frequency $n f_{0}$ is said to be the nth harmonic frequency, when $n>1$.

2.5 Fourier Series

Some Properties of the Complex Fourier Series

1. If $w(t)$ is real,

$$
c_{n}=c_{-n}^{*}
$$

2. If $w(t)$ is real and even $[$ ie., $w(t)=w(-t)]$.

$$
|m| c_{n} \mid=0
$$

3. If $w(t)$ is real and odd [ie., $w(t)=-w(-t)]$,

$$
\operatorname{Re}\left|F_{n}\right|=0
$$

4. Parseral's theorem is

$$
\frac{1}{T_{0}} \int_{a}^{e+T_{0}}|w(t)|^{2} d t=\sum_{n=-\infty}^{n+\infty}\left|c_{n}\right|^{2}
$$

2.5 Fourier Series

Some Properties of the Complex Fourier Series

5. The complex Fourier series coefficients of a real waveform are related to the quadrature Fourier series coefficients by

$$
c_{n}= \begin{cases}\frac{1}{2} a_{n}-j \frac{1}{2} b_{n}, & n>0 \\ a_{0}, & n=0 \\ \frac{1}{2} a_{-n}+j \frac{1}{2} b_{-n}, & n<0\end{cases}
$$

6. The complex Fourier series coefficients of a real waveform are related to the polar Fourier series coefficients by

$$
c_{n}= \begin{cases}\frac{1}{2} D \angle \varphi_{n}, & n>0 \\ D_{0}, & n=0 \\ \frac{1}{2} D_{-n} \angle \varphi_{-n}, & n<0\end{cases}
$$

Note that these properties for the complex Fourier series coefficients are similar to those of Fourier transform as given Sec. 2-2

2.5 Fourier Series

Quadrature Fourier Series

The Quadrature Form of the Fourier series representing any physical waveform $\boldsymbol{w}(t)$ over the interval $a<t<a+T_{0}$ is,

$$
w(t)=\sum_{n=0}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+\sum_{n=0}^{\infty} b_{n} \sin \left(n \omega_{0} t\right)
$$

Where the orthogonal functions are $\cos \left(n w_{0} t\right)$ and $\sin \left(n w_{0} t\right)$. we find that these Fourier coefficients are given by

$$
\begin{aligned}
& a_{n}= \begin{cases}\frac{1}{T_{0}} \int_{a}^{a+T_{0}} w(t) d t, & n=0 \\
\frac{2}{T_{0}} \int_{a}^{a+T_{0}} w(t) \cos n \omega_{0} t d t, & n \geq 1\end{cases} \\
& b_{n}=\frac{2}{T_{0}} \int_{a}^{a+T_{0}} w(t) \sin n \omega_{0} t d t, \\
& n>0
\end{aligned}
$$

2.5 Fourier Series

Polar Fourier Series

The Polar Form of the Fourier series representing any physical waveform is,

$$
w(t)=D_{0}+\sum_{n=1}^{\infty} D_{n} \cos \left(n \omega_{0} t+\varphi_{n}\right)
$$

Where $\mathrm{w}(\mathrm{t})$ is real and

$$
a_{n}=\left\{\begin{array}{cc}
D_{0}, n=0 \\
D_{n} \cos \varphi_{n}, & n \geq 1
\end{array} \quad b_{n}=-D_{n} \sin \varphi_{n} \quad n \geq 1\right.
$$

These two equations may be inverted, we got

$$
D_{n}=\left\{\begin{array}{c}
a_{0}, n=0 \\
\sqrt{a_{n}^{2}+b_{n}^{2}}, \quad n \geq 1
\end{array}=\left\{\begin{array}{c}
c_{0}, n=0 \\
2\left|c_{n}\right|, n \geq 1
\end{array} \quad \varphi_{n}=-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right)=\angle c_{n}, n \geq 1\right.\right.
$$

2.5 Fourier Series

What is the best form to use?

Figure 2-11 Fourier meries coefficients, in ≥ 1.

2.5 Fourier Series

Line Spectra for Periodic Waveforms

THEOREM. If $w(t)$ is periodic with period T_{o} and is represented by
where

$$
\begin{gathered}
w(t)=\sum_{n=-\infty}^{\infty} h\left(t-n T_{0}\right)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n v_{0} t} \\
h(t)=\left\{\begin{array}{cc}
w(t), & |t|<\frac{T_{0}}{2} \\
0, & \text { elsewhere }
\end{array}\right.
\end{gathered}
$$

Then the Fourier coefficients are given by

$$
c_{n}=f_{0} H\left(n f_{0}\right)
$$

and where

$$
H(f)=\mathfrak{J}[h(t)] \quad \text { and } f_{0}=1 / T_{0}
$$

2.5 Fourier Series

THEOREM. For a periodic waveform $\boldsymbol{w}(\boldsymbol{t})$, the normalized power is

$$
P_{w}=\left\langle w^{2}(t)\right\rangle=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}
$$

Where the $\left\{c_{n}\right\}$ are the complex Fourier coefficients for the waveform

2.5 Fourier Series

THEOREM. For a periodic waveform $w(t)$, the power spectral density (PSD) is

$$
P(f)=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)
$$

Where $T_{0}=1 / f_{0}$ is the period of the waveform, and the $\left\{c_{n}\right\}$ are the complex Fourier coefficients for the waveform

