4.5. Bandpass Filtering and Linear Distortion
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4.5. Bandpass Filtering and Linear Distortion

Equivalent low-pass Filter
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4.5. Bandpass Filtering and Linear Distortion

Equivalent Low-Pass Filter: Modeling a bandpass filter by using an
equivalent low-pass filter that has a complex-valued impulse
response.

Why?

Equations and analysis for equivalent low-pass filter are usually much
less complicated than those for bandpass filters.



4.5. Bandpass Filtering and Linear Distortion

The complex envelopes for the input, output, and

Theorem: impulse response of a bandpass filter are related by

Also, L6,(1)=16,(nNE k(1)

g,(t) — complex envelope of input

k(t) — complex envelope of impulse response



4.5. Bandpass Filtering and Linear Distortion

Proof: Spectrum of the output is
V() =n(r)H(f)

Spectra of bandpass waveforms are related to that of their complex enveloped

Gi(r-£)+ G r- LK - 1)+ K- 1)]

1[G =LK =)+ G (=LK (-~ 1)
4_+Gf(—f—fc)K(f—JZ)+Gf(—f—ﬂ)K*(—f—ﬁ.)]

Jelr-s)v6icr-1) =5

But G(f-/£)K'(-f-f)=0,

G (-f-f)K(f-1)=0.
lGf‘(—f—fc)%K*(—f—fc)}

0= a0 1) = [ 6l - 1)K - 1]+



4.5. Bandpass Filtering and Linear Distortion

Linear Distortion

For distortionless transmission of bandpass signals, the channel transfer function
H(f)=|H(f)e’) should satisfy the following requirements:

» The amplitude response is constant
H(f)=4 A- positive constant
» The derivative of the phase response is constant

9(f)=LH(f)=—2Jﬂd _Ldﬁ(f)_T Tg—complex envelope delay

27 dfF o(f)= LH(f)

Integrating the above equation, we get

0( f ) = =274T, + 6, 6, — phase shift constant

Are these requirements sufficient for distortionless transmission?
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Linear Distortion

vi(t) N () v2(t) N

v, (t) = x(t)cosa)ct — y(t)sin Wt

H(f) = Aej(_z’ﬂgwo) _ (Aejé’o )e—jzfﬂg

l

v, (t) = Ax(t - T, )cos[a)c (t -7, )]— Ay(t - T, )sin[wc (t -7, )]

T,: group time delay
T: carrier time delay, or phase delay

(9( f. ) =211, ; 8( f. )— carrier phase shift = T, — phase delay



4.6.

Bandpass Sampling Theorem

Sampling Theorem:
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B(t) = Z §(t — nTy)

z,(t) = za (t) $ () = za (t) }_‘: §(t - nT,) = Z za (nTy) &(t — nT,)



4.6. Bandpass Sampling Theorem

Sampling Theorem:

2.(6)= Y 2a(rT)E(t—nT)) =  X.(w): %’ Y Xa(w - kuw,)
n=—oo k=—00
X (W)
(a)
X, (W)




4.6. Bandpass Sampling Theorem

Theorem:
If a (real) bandpass waveform has a non-zero spectrum only over
the interval f, </f/<f,, where the transmission bandwidth B; is
taken to be same as absolute BW, B; = f,-f,, then the waveform

may be reproduced by its sample values if the sampling rate is:

-fs >= ZBT



4.6. Bandpass Sampling Theorem

Bandpass Dimensionality Theorem:

Assume that a bandpass waveform has a non-zero spectrum only
over the interval f, <[f[<f,, where the transmission bandwidth B;
is taken to be same as absolute BW, B; = f,-f,, and B; << f,. then
the waveform may be completely specified over a T,-second
interval by independent pieces of information. N is said to be the
number of dimensions required to specify the waveform

N = 2B.T,



4.7. Received Signal Plus Noise

The signal out of the transmitter

s(t) = Re|g(¢)e™ |

If the channel is LTI, then received signal + noise

r(t)=s(¢) h(t)+ nlz)

Where h(t) is the impulse response, and n(t) is the noise at the receiver input



4.7. Received Signal Plus Noise

If the channel is distorntionless

Signal + noise at the receiver input A — gain of the channel
r(t)= Re|_Ag(t -T, )ej (s(L)) n(t)J

6(f.)- carrier phase shift caused by the channel,
T,—channel group delay.

Receiver circuits are designed to estimate the 6(f,) and T,

Signal + noise at the receiver input

r(t)= Re[g(t)ejwctj+ n(z)



4.9. Nonlinear Distortion

Linear Distortion

Linear Amplifier

vi(t) V,(t)

— K

v,(t) = Kvt)

K is the voltage gain of the amplifier



4.9. Nonlinear Distortion

In practice, amplifier output becomes
saturated as the amplitude of the
wwe—=  input signal is increased.

Figure 4.5  Noalnesr anpilior cutpet 40 iaput characteriatic

Nonlinear Amplifier

vi(t) N ‘K K V,(t) N
oYy Where
v, (t) =K, + K,v; + K,vZ + ... = 2K v/ o= L{dW
Tonll av! -

1

K, is the output DC offset level, K,v; is the first-order (linear)
term, others are nonlinear term



4.9. Nonlinear Distortion

Harmonic Distortion associated with the amplifier output can be
determined by applying a single sinusoidal test tone to the amplifier input.

vl.(t)= A, smwyt

Then the second-order output term is

2
szl.z = K,(4,sinw,t) = K22AO (1-cos2w,t)

K, 4,
2
In general, for a single-tone input, the output will be

2"d Harmonic Distortion with amplitude of

v

out

(¢)=V, +V, cos(awyt + @) + V, cos(2ayt + @, )+ V; cos(3ewyt +@, )+

V,, — peak value of the output at the frequency nf,



4.9. Nonlinear Distortion

The Percentage Total Harmonic Distortion (THD) of an
amplifier is defined by

n

© 2
THD(%) = \/E{‘IZV x 100
1




4.9. Nonlinear Distortion

Intermodulation distortion (IMD) of the amplifier can be
determined by a two-tone input

v, (t) = A, smwt + A, sinw,t

the second-order output term is:

2

. 2 . . . .
K, (Ajsinwgt + Aysnwyt)” = K, (A12 sin® w7 + 2 A Ay sin @t sin ot + A3 sin a)zt)

= K2A12 Sin2 Cl)lt + KzA% Sin2 a)zt 1t K2 2A1A2 sin a)ltSin Cl)zt

| |

Harmonic distortion at 2f; & 2f, IMD

Second-order IMD is:

2K, A A, smwitsmant =K, A A, {cos[(a)1 -, )t]— cos[(a)1 + W, )]}



