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Equivalent	Low-Pass	Filter:	Modeling	a	bandpass	filter	by	using	an	
equivalent	low-pass	filter	that	has	a	complex-valued	impulse	
response.		

Why?		

Equa<ons	and	analysis	for	equivalent	low-pass	filter	are	usually	much	
less	complicated	than	those	for	bandpass	filters.		
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Theorem:	

g1(t)	–	complex	envelope	of	input	
k(t)	–	complex	envelope	of	impulse	response	

Also,		

The	complex	envelopes	for	the	input,	output,	and	
impulse	response	of	a	bandpass	filter	are	related	by	
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Proof:	 Spectrum	of	the	output	is	

Spectra	of	bandpass	waveforms	are	related	to	that	of	their	complex	enveloped	
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Linear	Distor5on	
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For	distor<onless	transmission	of	bandpass	signals,	the	channel	transfer	func<on	
H(f)																									should	sa<sfy	the	following	requirements:	( ) ( ) ( )fjefHfH θ=

Ø 	The	amplitude	response	is	constant	

A-	posi<ve	constant	

Ø 	The	deriva<ve	of	the	phase	response	is	constant	

Tg	–	complex	envelope	delay	( ) dfTfHf πθ 2)( −=∠=

( ) )( fHf ∠=θ

Integra<ng	the	above	equa<on,	we	get	

Are	these	requirements	sufficient	for	distor<onless	transmission?		

constantshift  phase 0 −θ
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Linear	Distor5on	

v1(t)	 v2(t)	
h(t)	

( ) ( ) ( ) ttyttxtv cc ωω sincos1 −=

( ) ( ) ( ) gg fTjjfTj eAeAefH πθθπ 22 00 −+− ==

Tg:	group	<me	delay	
Td:	carrier	<me	delay,	or	phase	delay	

( ) ( ) ( )[ ] ( ) ( )[ ]dcgdcg TtTtAyTtTtAxtv −−−−−= ωω sincos2

( ) ( ) delay phaseT shift  phasecarrier      ; 2 d −⇒−−= cdcc fTff θπθ
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If	a	(real)	bandpass	waveform	has	a	non-zero	spectrum	only	over	
the	 interval	 f1	 <|f|<f2,	 where	 the	 transmission	 bandwidth	 BT	 is	
taken	 to	be	 same	as	absolute	BW,	BT	=	 f2-f1,	 then	 the	waveform	
may	be	reproduced	by	its	sample	values	if	the	sampling	rate	is:	
	
																																																fs	>=	2BT	

Theorem:	
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Assume	that	a	bandpass	waveform	has	a	non-zero	spectrum	only	
over	the	interval	f1	<|f|<f2,	where	the	transmission	bandwidth	BT	
is	taken	to	be	same	as	absolute	BW,	BT	=	f2-f1,	and	BT	<<	f1.	then	
the	 waveform	 may	 be	 completely	 specified	 over	 a	 T0-second	
interval	by	independent	pieces	of	informa<on.	N	is	said	to	be	the	
number	of	dimensions	required	to	specify	the	waveform	
	
																																																N	=	2BTT0	

Bandpass	Dimensionality	Theorem:	
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( ) ( )[ ]tj cetgts ωRe=
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The	signal	out	of	the	transmiSer	

If	the	channel	is	LTI	,	then	received	signal	+	noise	

Where	h(t)	is	the	impulse	response,	and	n(t)	is	the	noise	at	the	receiver	input	
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( ) ( ) ( )( ) ( )[ ]tneTtAgtr cc ftj
g +−= +θωRe

( ) ( )[ ] ( )tnetgtr tj c += ωRe

If	the	channel	is	distorn<onless	

Signal	+	noise	at	the	receiver	input	

Signal	+	noise	at	the	receiver	input	

											-	carrier	phase	shiV	caused	by	the	channel,		
Tg	–	channel	group	delay.			

)( cfθ

A	–	gain	of	the	channel	

Receiver	circuits	are	designed	to	es<mate	the													and	Tg			)( cfθ
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vi(t)	 K	

Linear	Amplifier	
vo(t)	

																												vo(t)	=	Kvi(t)					

	

	K	is	the	voltage	gain	of	the	amplifier	

Linear	Distor5on	
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vi(t)	
K0,	K1,	K2,	….	

Nonlinear	Amplifier	
vo(t)	

															vo(t)	=K0	+	K1vi	+	K2vi
2	+	….	=	ΣKnvi

n				

In	prac<ce,	amplifier	output	becomes	
saturated	as	the	amplitude	of	the	
input	signal	is	increased.	
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Where	

K0	is	the	output	DC	offset	level,	K1vi	is	the	first-order	(linear)	
term,	others	are	nonlinear	term	
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Harmonic	DistorNon	associated	with	the	amplifier	output	can	be	
determined	by	applying	a	single	sinusoidal	test	tone	to	the	amplifier	input.	
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Then	the	second-order	output	term	is	

In	general,	for	a	single-tone	input,	the	output	will	be			

Vn	–	peak	value	of	the	output	at	the	frequency	nf0		

2
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The	Percentage	Total	Harmonic	Distor5on	(THD)	of	an	
amplifier	is	defined	by	
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IntermodulaNon	distorNon	(IMD)	of	the	amplifier	can	be	
determined	by	a	two-tone	input	

( ) tAtAtvi 2211 sinsin ωω +=

the	second-order	output	term	is:	

K2 A1sinω1t + A2snω2t( )2 = K2 A1
2 sin2ω1t + 2A1A2 sinω1t sinω2t + A2

2 sin2ω2t( )
                                          =  K2A1

2 sin2ω1t +K2A2
2 sin2ω2t +K2 2A1A2 sinω1t sinω2t

Harmonic	distor5on	at	2f1	&	2f2	 		IMD	

Second-order	IMD	is:	

( )[ ] ( )[ ]{ }212121221212 coscossinsin2 ωωωωωω +−−= tAAKttAAK


