

The **complex envelope** of an AM signal is given by

$$g(t) = A_c[1 + m(t)]$$

where the constant A_c has been included to specify the power level and m(t) is the modulating signal (analog or digital).

The **amplitude modulated** signal *s(t)*

 $s(t) = A_c [1 + m(t)] \cos w_c t$

The **complex envelope** of an AM signal is given by

$$g(t) = A_c[1 + m(t)]$$

where the constant A_c has been included to specify the power level and m(t) is the modulating signal (analog or digital).

The **spectrum** of the AM signal **S(f)**

$$S(f) = \frac{A_c}{2} \Big[\delta(f - f_c) + M(f - f_c) + \delta(f + f_c) + M(f + f_c) \Big]$$

m(t) $v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$ $s(t) = A_{c}[1 + m(t)]\cos w_{c}t$

DEFINATIONS

The percentage of *positive modulation* on an AM signal is 100% positive modulation = $(A_{max} - A_c)/A_c * 100 = \max[m(t)] * 100$

The percentage of *negative modulation* on an AM signal is 100% negative modulation = $(A_c - A_{min})/A_c^*100 = -min[m(t)]^*100$

The percentage of *overall modulation* on an AM signal is

100% modulation = $(A_{max} - A_{min})/2A_{c}^{*}100$

= $(\max[m(t)] - \min[m(t)])/2*100$

Example 5.1 AM Signal with 50% and 100% Modulation

Let an AM signal with a carrier frequency of 10 HZ be modulated with a sinusoidal signal having a frequency of 1 Hz. Furthermore, let the percentage of modulation be 50% over the time interval 0 < t < 2 sec and then changed to 100% over 2 < t < 4 sec. Plot the AM signal waveform over the interval of 0 < t < 4 sec.

Four-quadrant multiplier :The percentage of overall modulation can be over 100% when the A_{min} shows negative value.

Two-quadrant multiplier :The percentage of overall modulation has maximum value of 100%.

$$s(t) = \begin{cases} A_c [1 + m(t)] \cos w_c t, \ m(t) \ge -1 \\ 0, \ m(t) < -1 \end{cases}$$

Normalized average power of the AM signal is:

$$\left\langle s^{2}(t) \right\rangle = \frac{1}{2} \left\langle \left| g(t) \right|^{2} \right\rangle = \frac{1}{2} A_{c} \left\langle \left[1 + m(t) \right]^{2} \right\rangle$$
$$= \frac{1}{2} A_{c}^{2} + A_{c}^{2} \left\langle m(t) \right\rangle + \frac{1}{2} A_{c}^{2} \left\langle m^{2}(t) \right\rangle$$

If there is no DC level in the modulation, the normalized power of the AM signal is:

$$\left\langle s^{2}(t) \right\rangle = \frac{1}{2}A_{c}^{2} + \frac{1}{2}A_{c}^{2}\left\langle m^{2}(t) \right\rangle$$

discrete carrier power sideband power

DEFINATIONS

In AM signal, only the sideband components convey information, therefore, the *modulation efficiency* is the percentage of the total power of the modulated signal that conveys information.

$$E = \frac{\left\langle m^2(t) \right\rangle}{1 + \left\langle m^2(t) \right\rangle} \times 100\%$$

The *higest efficiency* can be generated is 50% for a pure AM signal when square-wave modulation is used.

DEFINATIONS

The normalized peak envelope power (PEP) is.

$$P_{PEP} = \frac{A_c^2}{2} \{1 + \max[m(t)]\}^2$$

The *voltage spectrum* is:

$$S(f) = \frac{A_c}{2} \Big[\delta(f - f_c) + M(f - f_c) + \delta(f + f_c) + M(f + f_c) \Big]$$

5.3. Double-Sideband Suppressed Carrier

A **double-sideband suppressed carrier (DSB-SC)** signal **s(t)** is and **AM** signal that has a suppressed discrete carrier.

 $s(t) = A_c m(t) \cos w_c t$

The **spectrum** for DSB-SC signal **S(f)** is

$$S(f) = \frac{A_c}{2} \left[M(f - f_c) + M(f + f_c) \right]$$

Angle-modulated Signal.

$$s(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$$

$$g(t) = A_{c}e^{j\theta(t)}$$

$$\Rightarrow s(t) = A_{c}\cos\left[w_{c}t + \theta(t)\right]$$

Where $R(t) = |g(t)| = A_c$, is a constant, $\theta(t)$ is a linear function of m(t).

The **Phase Modulation (PM) and Frequency Modulation (FM)** are special cases of angle-modulated signaling

Phase Modulation (PM)

 $\theta(t) = D_p m(t)$ $rightarrow s(t) = A_c \cos[w_c t + D_p m(t)]$

D_p, the phase sensitivity of the phase modulator, is a constant Unit: radians/volt-seconds

Frequency Modulation (FM)

$$\theta(t) = D_f \int_{-\infty}^t m(\sigma) d\sigma \implies s(t) = A_c \cos[w_c t + D_f \int_{-\infty}^t m(\sigma) d\sigma]$$

D_f, *the frequency sensitivity of the phase modulator,* is a *constant* Unit: radians/volt-seconds

Relation between Phase Modulation (PM) and Frequency Modulation (FM)

$$m_{f}(t) = \frac{D_{p}}{D_{f}} \left[\frac{dm_{p}(t)}{dt} \right] \qquad \longleftrightarrow \qquad m_{p}(t) = \frac{D_{f}}{D_{p}} \int_{-\infty}^{t} m_{f}(\sigma) d\sigma$$

$$\underbrace{m_{f}(t)}_{\text{gain} = \frac{D_{f}}{D_{p}}} \underbrace{m_{p}(t)}_{\text{(camer frequency = f_{d})}} \underbrace{s(t)}_{\text{FM signal out}}$$
(a) Generation of FM Using a Phase Modulator

(b) Generation of PM Using a Frequency Modulator

DEFINATIONS

If a bandpass signal is represented by

 $s(t) = \mathbf{R}(t) \cos \psi(t)$

Where $\psi(t) = w_c t + \theta(t)$, then the instantaneous frequency of s(t) is

$$f_i(t) = \frac{1}{2\pi} w_i(t) = \frac{1}{2\pi} \left[\frac{d\psi(t)}{dt} \right]$$

Or
$$f_i(t) = f_c + \frac{1}{2\pi} \left[\frac{d\theta(t)}{dt} \right]$$

For FM case, the *instantaneous frequency* is

$$f_i(t) = f_c + \frac{1}{2\pi} D_f m(t)$$

It is the frequency that is present at a particular instant of time

$$s(t) = A_c \cos[w_c t + D_f \int_{-\infty}^t m(\sigma) d\sigma]$$

Frequency Modulation

The *frequency deviation* from the carrier frequency is:

$$f_d(t) = f_i(t) - f_c = \frac{1}{2\pi} \left[\frac{d\theta(t)}{dt} \right]$$

The *peak frequency deviation* is:

$$\Delta F = \max\left\{\frac{1}{2\pi} \left[\frac{d\theta(t)}{dt}\right]\right\}$$

For FM signal, the *peak frequency deviation* is related to the peak Modulating voltage by:

$$\Delta F = \frac{1}{2\pi} D_f V_p$$
 where $V_p = \max[m(t)]$

Phase Modulation

The *peak phase deviation* is:

 $\Delta \theta = \max[\theta(t)] = D_p \max[m(t)] = D_p V_p$

The *frequency modulation index* is:

$$\beta_f = \frac{\Delta F}{B}$$

Where B is the bandwidth of the modulating signal, which, for the case of sinusoidal modulation, is f_m , the frequency of the sinusoid.

The *phase modulation index* is:

$$\beta_p = \Delta \theta$$

Spectra of Angle-Modulated Signals

$$S(f) = \frac{1}{2} \Big[G(f - f_c) + G^*(-f - f_c) \Big]$$

where:

$$G(f) = \Im[g(t)] = \Im[A_c e^{j\theta(t)}]$$

- \diamond FM is considered to be superior to AM.
- \diamond Transmission efficiency.
 - > AM use linear amplifier to produced the final RF signal
 - AM has constant carrier amplitude so it is not necessary to use linear amplifier
- ♦ Fidelity (capture effect)
 - > The stronger signal will be capture and eliminate the weaker
 - > In AM, the weaker signal can be heard in the background
- ♦ Noise immunity (noise reduction)
 - Constant carrier amplitude
 - > FM receiver have limiter circuit

Disadvantages of FM

- \diamond Use too much spectrum space.
- \diamond Requiring a wider bandwidth.
- \diamond More complex circuitry

Bessel Function

Narrowband Angle Modulation

When $\theta(t)$ is restricted to a small value, say, $|\theta(t)| < 0.2$ rad, the complex envelope $g(t) = A_c e^{j\theta}$ may be approximated by a Taylor's series in which only the first two terms are used.

Narrowband Angle Modulation

The spectrum of narrowband angle modulation

$$S(f) = \frac{A_c}{2} \left\{ \left[\delta(f - f_c) + \delta(f + f_c) \right] + j \left[\Theta(f - f_c) + \Theta(f + f_c) \right] \right\}$$

where
$$\Theta(f) = \Im[\theta(t)] = \begin{cases} D_p M(f), PM \\ \frac{D_f}{j2\pi f} M(f), FM \end{cases}$$

Wideband Frequency Modulation (WBFM)

THEOREM: For WBFM signaling, where

$$s(t) = A_c \cos[w_c t + D_f \int_{-\infty}^t m(\sigma) d\sigma]$$