Chapter 4. Bandpass Signaling Principles And Circuits Chapter Objectives

- > Complex envelopes and modulated signals
- > Spectra of bandpass signals
- Nonlinear distortion
- Communication circuits
- > Transmitters and receivers
- Software radios

DEFINATIONS

Baseband waveform: A baseband waveform has a spectral magnitude that is nonzero for frequencies in the vicinity of the origin (i.e. f = 0) and negligible elsewhere.

Bandpass waveform: A bandpass waveform has a spectral magnitude that is nonzero for frequencies in some band concentrated about a frequency $f = \pm f_c$, where $f_c >>0$. The spectral magnitude negligible elsewhere. f_c is called the *carrier frequency*.

Modulation: the process of imparting the source information onto a bandpass signal with a carrier frequency f_c by the introduction of amplitude or phase perturbation or both. This bandpass signal is called the *modulated signal s(t)*, and the baseband source signal is called the *modulating signal m(t)*.

Complex Envelope Represetnation

Complex Envelope Represetnation

Theorem: Any physical bandpass waveform can be represented by

$$v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$$
 Format 1

Here, **Re{.}** denotes the real part of {.}, g(t) is called the complex envelope of v(t), and f_c is the associated *carrier frequency*, where $w_c=2\pi f_c$

$$v(t) = \mathbf{R}(t)\cos[w_c t + \theta(t)]$$
 Format 2

 $v(t) = x(t)\cos(w_c t) - y(t)\sin(w_c t)$ Format 3

Example 4-1. In phase and quadrature modulated signaling

Let $x(t) = cos(2\pi t)$ and y(t) be a rectangular pulse described by

$$y(t) = \begin{cases} 0, t < 1 \\ 1, 1 \le t \le 2 \\ 0, t > 2 \end{cases}$$

Using Eq. $v(t) = \operatorname{Re}\left\{g(t)e^{jw_c t}\right\}$, plot the resulting modulated

signal over the time Interval 0 < t < 4 sec. Assume that the carrier frequency is 10 Hz.

Example 4-1. In phase and quadrature modulated signaling

4.2. Representation of Modulated Signals

Modulation is the process of encoding the source information *m(t)* (modulating signal) into a bandpass signal *s(t)*.

The modulated signal is given by

$$s(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$$

Where $w_c = 2\pi f_c$, in which f_c is the carrier frequency

The complex envelope g(t) is a function of the modulating signal m(t)

g(t) = g[m(t)]

4.3. Spectrum of Bandpass Signals

The spectrum of a bandpass signal is directly related to the spectrum of its complex envelope

Theorem: If a bandpass waveform is represented by

$$v(t) = \operatorname{Re}\left\{g(t)e^{jw_{c}t}\right\}$$

Then the **spectrum** of the bandpass waveform is

$$V(f) = \frac{1}{2} \Big[G(f - f_c) + G^*(-f - f_c) \Big]$$

The **PSD** of the bandpass waveform is

$$p_{v}(f) = \frac{1}{4} \Big[p_{g}(f - f_{c}) + p_{g}(-f - f_{c}) \Big]$$

where $G(f) = \Im[g(t)]$ and $P_{g(f)}$ is the PSD of g(t)

4.3. Spectrum of Bandpass Signals

Example 4-2. Spectrum for a quadrature modulated signal

Using FFT, calculated and plot the magnitude spectrum for the QM Signal that is described in Example 4.1

4.3. Spectrum of Bandpass Signals

Example 4-2. Spectrum for a quadrature modulated signal

4.4. Evaluation of Power

Theorem: The **total average normalized power** of a bandpass waveform *v(t)* is

$$P_{v} = \left\langle v^{2}(t) \right\rangle = \int_{-\infty}^{\infty} p_{v}(f) df = R_{v}(0) = \frac{1}{2} \left\langle \left| g(t) \right|^{2} \right\rangle$$

where "normalized" implies that the load is equivalent to one ohm.

Theorem: The *peak envelope power* (PEP) is the average power that would be obtained if |g(t)| were to be held constant at its peak value.

Theorem: The *normalized PEP* is given by

 $P_{PEP} = \frac{1}{2} [\max|g(t)|]^2$