- Differential Pulse Code Modulation (DPCM) occurs can be used when adjacent samples are close to the same value.
- ♦ There may be a lot of redundancy in the samples and therefore bandwidth would be wasted.
- \diamond One way to avoid this is to only transmit the "differentials".
- ♦ Also, the present value can be estimated from past values by using a *prediction filter*.

The present value can be estimated from past values by using a *prediction filter*.

First DPCM configuration: uses predictor to obtain a differential pulse amplitude-modulated (DPAM) signal.

Figure 3-29 DPCM, using prediction from samples of input signal.

Second DPCM configuration: to minimize the quantization noise on the recovered analog signal.

Figure 3-30 DPCM, using prediction from quantized differential signal.

Same as PCM, the DPCM follows the 6-dB rule

 $\left(\frac{S}{N}\right)_{dB} = 6.02n + \alpha$ where n is the bit number

For **PCM**: α = 4.77 for peak SNR, α = 0 for average SNR.

For **DPCM**: α has a wide range depending on the properties of the input analog signal.

For example: $\alpha = -10 \text{ dB}$ for $\mu = 255 \text{ companded PCM} (\mu - law)$ signal . The SNR improvement of 25 dB for DPCM.

Delta Modulation (DM) is a special case of DPCM in which there are two quantizing levels. It's main features are:

- \diamond The transmitted data are reduced to 1-bit data stream.
- \diamond The analog signal is approximated with a series of segments.
- ♦ Each segment of approximated signal is determined by comparison.
- Only the change of information is sent. Generally speaking, "1" indicate amplitude "increasing", and "0" indicate amplitude "decrease", and alternative "1" and "0" indicates amplitude remains.
- To achieve high SNR, delta modulation must use *oversampling* techniques, that is, the analog signal is sampled at a rate several times higher than the Nyquist rate.

⁽a) Analog Input and Accumulator Output Waveforms

(b) Delta Modulation Waveform

Granular Noise and Slope Overload Noise

The quantizing noise error signal may be classified into two types of noise: *slope overload noise* and *granular noise*

granular noise: occurs for any
step size δ. The
smaller step the smaller noise

Example 3-16 Design of a DM system

Find the step size δ required to prevent slope overload noise for the case when the input signal is a sine wave.

PSD and NSR of Noise

The PSD for the noise is:

$$p_n(f) = \frac{\delta^2}{6f_s}$$

Granular noise power in the analog signal band:

$$N = < n^{2} > = \int_{-B}^{B} p_{n}(f) df = \frac{\delta^{2}B}{3f_{s}}$$

A delta modulation (DM) system is tested with a 10-kHz sinusoidal signal, 1 V peak-to-peak, at the input. The signal is sampled at 10 times the Nyquist rate.

- a) What is the step size required to prevent slope overload and to minimize granular noise?
- b) What is the PSD for the granular noise?

3.9. Time-Division Multiplexing

DEFINIATION: *Time-division multiplexing* (TDM) is the time interleaving of samples form several sources so that the information from these sources can be transmitted serially over a single communication channel.

At the Transmitter

Simultaneous transmission of several signals on a time-sharing basis.

> Each signal occupies its own distinct time slot, using all frequencies, for the duration of the transmission.

> Slots may be permanently assigned on demand.

3.9. Time-Division Multiplexing

At the Receiver

> Decommutator (sampler) has to be synchronized with the incoming waveform \rightarrow Frame Synchronization

Low pass filter

ISI – poor channel filtering

> Feedthrough of one channel's signal into another channel -- Crosstalk

Applications of TDM: Digital Telephony, Data Communications, Satellite Access, Cellular Radio.

3.9. Time-Division Multiplexing

 $f_s = \frac{1}{T_s}$ f_s satisfies Nyquist rate