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Chapter 5 Multiple Random Variables
§ 5.1 Joint Cumulative Distribution Function

The joint CDF FX,Y(x,y)=P[X<=x, Y<=y] is a complete probability model for any 
pair of random variables X and Y.

Definition 5.1 Joint Cumulative Distribution Function (CDF)

𝑭𝑿,𝒀 𝒙, 𝒚 = 𝑷[𝑿 ≤ 𝒙, 𝒀 ≤ 𝒚]
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§ 5.1 Joint Cumulative Distribution Function

Theorem 5.1

𝑎. )	0 ≤ 𝐹2,3 𝑥, 𝑦 ≤ 1

For	any	pair	of	random	variables,	X,	Y,

𝑏. )	𝐹2,3 ∞,∞ = 1

𝑐. )	𝐹2 𝑥 = 𝐹2,3 𝑥, ∞ 𝑑. )	𝐹3 𝑦 = 𝐹2,3 ∞, 𝑦

𝑒. )	𝐹2,3 𝑥, −∞ =	0 𝑓. )	𝐹2,3 −∞, 𝑦 =	0

g.)	If x	<=	x1 and	y	<=	y1,	then	

	𝐹2,3 𝑥, 𝑦 ≤ 𝐹2,3(𝑥?, 𝑦?)
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§ 5.1 Joint Cumulative Distribution Function

Example 5.2

X	years	is	the	age	of	children	entering	first	grade	in	a	school.	Y	is	the	age	of	children	entering	second	grade.	
The	joint	CDF	of	X	and	Y	is:

𝐹2,3 𝑥, 𝑦 =

0, 𝑥 < 5
0, 𝑦 < 6

𝑥 − 5 𝑦 − 6 , 5 ≤ 𝑥 < 6, 6 ≤ 𝑦 < 7
𝑦 − 6, 𝑥 ≥ 6, 6 ≤ 𝑦 < 7
𝑥 − 5, 5 ≤ 𝑥 < 6, 𝑦 ≥ 7

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Fin	FX(x)	and	FY(y)
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§ 5.1 Joint Cumulative Distribution Function

Theorem 5.2

𝑷 𝒙𝟏 < 𝑿 ≤ 𝒙𝟐, 𝒚𝟏 < 𝒀 ≤ 𝒚𝟐 = 𝑭𝑿,𝒀 𝒙𝟐, 𝒚𝟐 − 𝑭𝑿,𝒀 𝒙𝟐, 𝒚𝟏 − 𝑭𝑿,𝒀 𝒙𝟏, 𝒚𝟐 + 𝑭𝑿,𝒀 𝒙𝟏, 𝒚𝟏

Quiz 5.1

Express	the	following	extreme	values	of	the	joint	CDF	𝐹2,3 𝑥, 𝑦	 as	numbers	or	in	terms	of	the	CDF’s	
𝐹2 𝑥 and	𝐹3 𝑦

𝑎. )	𝐹2,3 −∞, 2 𝑏. )	𝐹2,3 −∞,∞

𝑐. )	𝐹2,3 ∞, 𝑦 𝑑. )	𝐹2,3 ∞, −∞
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§ 5.2 Joint Probability Mass Function (Discrete)

Definition 5.2 Joint Probability Mass Function (PMF)

The	joint	probability	mass	function	of	discrete	random	variable	X	and	Y	is

𝑃2,3 𝑥, 𝑦 = 𝑃[𝑋 = 𝑥, 𝑌 = 𝑦]

Necessary	and	Sufficient	Conditions	for	a	Function	to	be	a	discrete	Joint	Probability	Mass	Function

1. 	𝑃2,3 𝑥, 𝑦 ≥ 0

2. S S 𝑃2,3 𝑥, 𝑦 = 1
�

UVV	W

�

UVV	X
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§ 5.2 Joint Probability Mass Function (Discrete)

Example

In	an	automobile	plant	two	tasks	are	performed	by	robots.	The	first	entails	welding	two	joints;	the	second,	tightening	
three	bolts.	Let	X	denote	the	number	of	defective	welds	and	Y	the	number	of	improperly	tightened	bolts	produced	per	
car.	Since	X	and	Y	are	each	discrete,	(X,Y)	is	a	two-dimensional	discrete	random	variable.	Past	data	indicate	that	the	joint	
mass	function	is	as	shown	in	Table.	

x/y

0

1

2

1 2 3 4

0.840

0.060

0.010

0.030

0.010

0.005

0.020

0.008

0.004

0.010

0.002

0.001

𝑃2,3 𝑥, 𝑦 =

0.840, 𝑥 = 0, 𝑦 = 0
0.030, 𝑥 = 0, 𝑦 = 1
0.020, 𝑥 = 0, 𝑦 = 2
0.010, 𝑥 = 0, 𝑦 = 3… , … . .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



7

§ 5.2 Joint Probability Mass Function (Discrete)

Theorem 5.3

For	discrete	random	variable	X	and	Y	and	any	set	B	in	the	X,	Y	plane,	the	probability	of	the	event	{(X,	Y)	∈ 𝐵}	is

𝑃 𝐵 = S 𝑃2,3(𝑥, 𝑦)
�

(X,W)∈_



8

§ 5.3 Marginal Probability Mass Function (Discrete)

For	discrete	random	variable,	the	marginal	PMFs	PX(x)	and	PY(y)	are	probability	models	for	the	individual	random	
variables	X	and	Y

𝑃2 𝑥 = S 𝑃2,3(𝑥, 𝑦)
�

W∈`a

Theorem 5.4

For	discrete	random	variables	X	and	Y	with	joint	PMF	PX,Y(x,y)

𝑃3 𝑦 = S 𝑃2,3(𝑥, 𝑦)
�

X∈`b

Y	choose	all	the	r.	v.	from	SY

X choose	all	the	r.	v.	from	SX
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§ 5.4 Joint Probability Density Function (Continuous)

Theorem 5.5

Definition 5.3 Joint Probability Density Function (PDF)

The	joint	PDF	of	the	continuous	random	variables	X	and	Y	is	a	function	fX,Y(x,y)	with	the	property

𝐹2,3 𝑥, 𝑦 = c c 𝑓2,3 𝑢, 𝑣 𝑑𝑢𝑑𝑣
f

gf

f

gf

𝑓2,3 𝑥, 𝑦 =
𝜕i𝐹2,3(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
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§ 5.6 Independent Random Variable

Example 5.12

Definition 5.4 Independent Random Variable

Random	variables	X and	Y are	independent if	and	only	if

Discrete: 𝑃2,3 𝑥, 𝑦 = 𝑃2(𝑥)𝑃3(𝑦)

Continuous: 𝑓2,3 𝑥, 𝑦 = 𝑓2(𝑥)𝑓3(𝑦)

𝑓2,3 = j4𝑥𝑦, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Are	X	and	Y	independent?
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§ 5.6 Independent Random Variable

Quiz 5.6

(A)	Random	variables	X and	Y,	and	Random	variables	Q	and	G	have	joint	PMFs:

PX,Y(x,y)

0

1

2

0 1 2

0.01

0.09

0

0

0.09

0

0

0

0.81

PQ,G(q,g)

0

1

0 1 2

0.06

0.04

0.18

0.12

0.12

0.8

Are	X	and	Y	independent
Are	Q	and	G independent

(B)	Random	variables	X1	and	X2	are	independent	and	identically	distributed	with	probability	density	function

𝑓2(𝑥) = j𝑥/2, 0 ≤ 𝑥 ≤ 2	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What	is	the	joint	PDF		 𝑓2l,2m 𝑥?, 𝑥i ?
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§ 5.7 Expected Value of a Function of Two Random Variables

Theorem 5.9

For	Random	variables	X and	Y,	the	expected	value	of	W =	g(X,	Y)	is

Discrete: 𝐸 𝑊 = S S 𝑔(𝑥, 𝑦)𝑃2,3(𝑥, 𝑦)
�

W∈`a

�

X∈`b

Continuous: 𝐸 𝑊 = c c 𝑔 𝑥, 𝑦 𝑓2,3 𝑥, 𝑦 𝑑𝑥𝑑𝑦
f

gf

f

gf

Theorem 5.10

𝐸 𝑎?𝑔? 𝑋, 𝑌 + ⋯+ 𝑎s𝑔s 𝑋, 𝑌 = 𝑎?𝐸 𝑔? 𝑋, 𝑌 + ⋯+ 𝑎s𝐸 𝑔s 𝑋, 𝑌
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§ 5.7 Expected Value of a Function of Two Random Variables

Theorem 5.11

For	any	two	Random	variables	X and	Y

Theorem 5.12

𝑉𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2𝐸[(𝑋 − 𝜇2)(𝑌 − 𝜇3)]

E[X+Y]	=	E[X]	+	E[Y]
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§ 5.7 Expected Value of a Function of Two Random Variables

Example

Random	variables	X	and	Y	have	joint	PDF

𝑓2,3(𝑥, 𝑦) = j5𝑥
i/2, −1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝑥i

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(a) What	are	E[X]	and	Var[X]?
(b) What	are	E[Y]	and	Var[Y]?
(c) What	is	Cov[X,	Y]?
(d) What	is	E[X+Y]?
(e) What	is	Var[X+Y]?
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§ 5.8 Covariance, Correlation and Independence

Definition 5.5 Covariance

The	covariance of	two	random	variables	X and	Y is

𝐶𝑜𝑣 𝑋, 𝑌 = 	𝐸[(𝑋 − 𝜇2)(𝑌 − 𝜇3)]

Definition 5.6 Correlation Coefficient

The	correlation	coefficient	of	two	random	variables	X and	Y is

𝜌2,3 =
𝐶𝑜𝑣[𝑋, 𝑌]

𝑉𝑎𝑟 𝑋 𝑉𝑎𝑟[𝑌]�
=
𝐶𝑜𝑣[𝑋, 𝑌]
𝜎2𝜎3
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§ 5.8 Covariance, Correlation and Independence

Theorem 5.13 
If	𝑋y = 𝑎𝑋 + 𝑏 and	𝑌y = 𝑐𝑌 + 𝑑,	then	

Theorem 5.14

−1 ≤ 𝜌2,3≤ 1

(a)	𝜌2y,3y = 𝜌2,3 (b)	𝐶𝑜𝑣[𝑋y, 𝑌y] = 𝑎𝑐𝐶𝑂𝑉[𝑋, 𝑌]

Theorem 5.15

If	X	and	Y	are	random	variables	such	that	Y	=	aX +	b

𝜌2,3 = {
−1 𝑎 < 0
0 𝑎 = 0
1 𝑎 > 0
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§ 5.8 Covariance, Correlation and Independence

Definition 5.7 

The	correlation	of	X and	Y is		𝑟2,3 = 𝐸[𝑋𝑌]

Theorem 5.16
(a)	𝐶𝑜𝑣 𝑋, 𝑌 = 𝑟2,3 − 𝜇2𝜇3

(b)	Var 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2𝐶𝑜𝑣[𝑋, 𝑌]

The	relation	between	covariance	and	correlation

The	relation	between	variance	and	covariance

(c)	If	X	=	Y,		Cov 𝑋, 𝑌 = 𝑉𝑎𝑟 𝑋 = 𝑉𝑎𝑟 𝑌 ,	and	𝑟2,3 = 𝐸 𝑋i = 𝐸[𝑌i]
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§ 5.8 Covariance, Correlation and Independence

Definition 5.8 Orthogonal Random Variables

Random	variables	X and	Y are	orthogonal if		𝑟2,3 = 0

Definition 5.9 Uncorrelated Random Variables

Random	variables	X and	Y are	uncorrelated if	𝐶𝑜𝑣[𝑋, 𝑌] 	= 0
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§ 5.8 Covariance, Correlation and Independence

Theorem 5.17

(a)	E 𝑔 𝑋 ℎ(𝑌) = 𝐸 𝑔 𝑋 𝐸[ℎ(𝑌)]

(b)	𝑟2,3 = 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸[𝑌]

(c)	Cov 𝑋, 𝑌 = 𝜌2,3 = 0

For	independent random	variables	X	and	Y,

(c)	Var 𝑋, 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟[𝑌]
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§ 5.9 Bivariate Gaussian Random Variables

Definition	5.10	Bivariate	Gaussian	Random	Variables

Random	variable	X and Y	have	a	bivariate	Gaussian	PDF	with	parameters							,						,	
and												satisfying																											if		

fX,Y (x, y) =

exp

x −µX
σ X

⎛

⎝
⎜

⎞

⎠
⎟
2

−
2ρX,Y (x −µX )(y−µY )

σ XσY
+

y−µY
σY

⎛

⎝
⎜

⎞

⎠
⎟
2

2 1− ρX,Y
2( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2πσ XσY 1− ρX,Y
2

µX µY σ X > 0
σY > 0 ρX,Y −1< ρX,Y <1
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§ 5.9 Bivariate Gaussian Random Variables

Theorem	5.18

If	X and Y	 are	the	bivariate	Gaussian	random	variable	in	definition	5.10,	X	is	the	Gaussian	
(						,								)	random	variable	and	Y	is	the	Gaussian	(						,							)	random	variable:

fX (x) =
1

σ X 2π
exp

− x −µX( )2

2σ X
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

µX µYσ X σY

fY (y) =
1

σY 2π
exp

− y−µY( )2

2σY
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Theorem	5.19

Bivariate	Gaussian	random	variable	X and Y	 in	definition	5.10,	have	correlation	coefficient		ρX,Y

Theorem	5.20

Bivariate	Gaussian	random	variable	X and Y	are	uncorrelated	if	and	only	if	they	are	independent	
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§ 5.9 Bivariate Gaussian Random Variables

Theorem	5.21

If	X and Y	 are	the	bivariate	Gaussian	random	variable	in	definition	5.10,	and	W1 and	W2
are	given	by	the	linearly	independent	equations

W1 = a1X + b1Y

Then	W1 and	W2 are	bivariate	Gaussian	random	variable	such	that

W2 = a2X + b2Y

E[Wi ]= aiµX + biµY

Var[Wi ]= ai
2σ X

2 + bi
2σY

2 + 2aibiρX,Yσ XσY

Cov[W1,W2 ]= a1a2σ X
2 + b1b2σY

2 + (a1b2 + a2b1)ρX,Yσ XσY
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§ 5.10 Multivariate Probability Models

Definition	5.11	Multivariate	Joint	CDF
The	joint	CDF of	X1,	X2,	… Xn is		

FX1,...,Xn
(x1, x2,..., xn ) = P X1 ≤ x1,X2 ≤ x2,...,XN ≤ xn[ ]

Definition	5.12	Multivariate	Joint	PMF

The	joint	PMF of	the	discrete	random	variable	X1,	X2,	… Xn is		

PX1,...,Xn
(x1, x2,..., xn ) = P X1 = x1,X2 = x2,...,XN = xn[ ]

Definition	5.12	Multivariate	Joint	PDF

fX1,...,Xn
(x1, x2,..., xn ) =

∂nFX1...Xn
(x1, x2,..., xn )

∂x1∂x2...∂xn

The	joint	PDF of	the	continuous	random	variable	X1,	X2,	… Xn is		
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§ 5.10 Multivariate Probability Models

Theorem	5.22
If	X1,	X2,	… Xn are	discrete	random	variables	with	joint	PMF		

PX1,...,Xn
(x1, x2,..., xn ) ≥ 0

PX1,...,Xn
(x1, x2,..., xn )

... PX1,...,Xn
(x1, x2,..., xn ) =1

xn∈SXn

∑
x1∈SX1

∑

Theorem	5.23

If	X1,	X2,	… Xn are	discrete	random	variables	with	joint	PMF		 fX1,...,Xn
(x1, x2,..., xn )

fX1,...,Xn
(x1, x2,..., xn ) ≥ 0

...
−∞

∞

∫ fX1,...,Xn
(x1, x2,..., xn )dx1...dxn =1

−∞

∞

∫

FX1,...,Xn
(x1,..., xn ) = ...

−∞

∞

∫ fX1,...,Xn
(u1,u2,...,un )du1...dun

−∞

∞

∫
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§ 5.10 Multivariate Probability Models

Theorem	5.24
The	probability	of	an	event	A	expressed	in	terms	of	the	random	variables	X1,	X2,	… Xn

P[A]= PX1,...,Xn
(x1, x2,..., xn )

(x1,...,xn )∈A
∑

P[A]= ...
A
∫∫∫ fX1,...,Xn

(x1, x2,..., xn )dx1...dxn

Discrete

Continuous


