Chapter 5 Multiple Random Variables

§ 5.1 Joint Cumulative Distribution Function

The joint CDF $F_{X, Y}(x, y)=P[X<=x, Y<=y]$ is a complete probability model for any pair of random variables \mathbf{X} and \mathbf{Y}.

Definition 5.1 Joint Cumulative Distribution Function (CDF)

$$
F_{X, Y}(x, y)=P[X \leq x, Y \leq y]
$$

§ 5.1 Joint Cumulative Distribution Function

Theorem 5.1

For any pair of random variables, X, Y,
a.) $0 \leq F_{X, Y}(x, y) \leq 1 \quad$ b.) $F_{X, Y}(\infty, \infty)=1$
c.) $F_{X}(x)=F_{X, Y}(x, \infty)$
d.) $F_{Y}(y)=F_{X, Y}(\infty, y)$
e.) $F_{X, Y}(x,-\infty)=0$
f.) $F_{X, Y}(-\infty, y)=0$
g.) If $x<=x_{1}$ and $y<=y_{1}$, then

$$
F_{X, Y}(x, y) \leq F_{X, Y}\left(x_{1}, y_{1}\right)
$$

§ 5.1 Joint Cumulative Distribution Function

Example 5.2

X years is the age of children entering first grade in a school. Y is the age of children entering second grade. The joint CDF of X and Y is:

$$
F_{X, Y}(x, y)=\left\{\begin{aligned}
0, \quad x<5 \\
0, \quad y<6 \\
(x-5)(y-6), \quad 5 \leq x<6,6 \leq y<7 \\
y-6, \quad x \geq 6,6 \leq y<7 \\
x-5, \quad 5 \leq x<6, y \geq 7 \\
1, \quad \text { otherwise }
\end{aligned}\right.
$$

Fin $F_{X}(x)$ and $F_{Y}(y)$

§ 5.1 Joint Cumulative Distribution Function

Theorem 5.2

$$
P\left[x_{1}<X \leq x_{2}, y_{1}<Y \leq y_{2}\right]=F_{X, Y}\left(x_{2}, y_{2}\right)-F_{X, Y}\left(x_{2}, y_{1}\right)-F_{X, Y}\left(x_{1}, y_{2}\right)+F_{X, Y}\left(x_{1}, y_{1}\right)
$$

Quiz 5.1

Express the following extreme values of the joint CDF $F_{X, Y}(x, y)$ as numbers or in terms of the CDF's $F_{X}(x)$ and $F_{Y}(y)$
a.) $F_{X, Y}(-\infty, 2)$
b.) $F_{X, Y}(-\infty, \infty)$
c.) $F_{X, Y}(\infty, y)$
d.) $F_{X, Y}(\infty,-\infty)$

§ 5.2 Joint Probability Mass Function (Discrete)

Definition 5.2 Joint Probability Mass Function (PMF)

The joint probability mass function of discrete random variable X and Y is

$$
P_{X, Y}(x, y)=P[X=x, Y=y]
$$

Necessary and Sufficient Conditions for a Function to be a discrete Joint Probability Mass Function

$$
\begin{aligned}
& \text { 1. } P_{X, Y}(x, y) \geq 0 \\
& \text { 2. } \sum_{\text {all } x} \sum_{\text {all } y} P_{X, Y}(x, y)=1
\end{aligned}
$$

§ 5.2 Joint Probability Mass Function (Discrete)

Example

In an automobile plant two tasks are performed by robots. The first entails welding two joints; the second, tightening three bolts. Let X denote the number of defective welds and Y the number of improperly tightened bolts produced per car. Since X and Y are each discrete, (X, Y) is a two-dimensional discrete random variable. Past data indicate that the joint mass function is as shown in Table.

x / y	$\mathbf{1}$	$\mathbf{2}$	3	4
$\mathbf{0}$	0.840	0.030	0.020	0.010
1	0.060	0.010	0.008	0.002
$\mathbf{2}$	0.010	0.005	0.004	0.001

$$
P_{X, Y}(x, y)=\left\{\begin{array}{c}
0.840, \quad x=0, y=0 \\
0.030, \quad x=0, y=1 \\
0.020, \quad x=0, y=2 \\
0.010, \quad x=0, y=3 \\
\ldots, \quad \ldots \ldots \\
0, \quad \text { otherwise }
\end{array}\right.
$$

§ 5.2 Joint Probability Mass Function (Discrete)

Theorem 5.3

For discrete random variable X and Y and any set B in the X, Y plane, the probability of the event $\{(X, Y) \in B\}$ is

$$
P[B]=\sum_{(x, y) \in B} P_{X, Y}(x, y)
$$

§ 5.3 Marginal Probability Mass Function (Discrete)

For discrete random variable, the marginal PMFs $P X(x)$ and $P Y(y)$ are probability models for the individual random variables X and Y

Theorem 5.4

For discrete random variables X and Y with joint PMF $P_{X, Y}(x, y)$

$$
\begin{array}{ll}
P_{X}[x]=\sum_{y \in S_{Y}} P_{X, Y}(x, y) & Y \text { choose all the } r . v . \text { from } \mathrm{S}_{\mathrm{Y}} \\
P_{Y}[y]=\sum_{x \in S_{X}} P_{X, Y}(x, y) & X \text { choose all the } r . v . \text { from } \mathrm{S}_{X}
\end{array}
$$

§ 5.4 Joint Probability Density Function (Continuous)

Definition 5.3 Joint Probability Density Function (PDF)

The joint PDF of the continuous random variables X and Y is a function $f_{X, Y}(x, y)$ with the property

$$
F_{X, Y}(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(u, v) d u d v
$$

Theorem 5.5

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

§ 5.6 Independent Random Variable

Definition 5.4 Independent Random Variable

Random variables \boldsymbol{X} and \boldsymbol{Y} are independent if and only if

$$
\begin{array}{rr}
\text { Discrete: } & P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y) \\
\text { Continuous: } & f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
\end{array}
$$

Example 5.12

$$
f_{X, Y}=\left\{\begin{array}{ll}
4 x y, & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, \text { otherwise }
\end{array} \quad \text { Are } X \text { and } Y\right. \text { independent? }
$$

§ 5.6 Independent Random Variable

Quiz 5.6

(A) Random variables \boldsymbol{X} and \boldsymbol{Y}, and Random variables Q and G have joint PMFs:

$\mathrm{P}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})$	0	1	2
0	0.01	0	0
1	0.09	0.09	0
2	0	0	0.81

Are X and Y independent

$P_{Q, G}(q, g)$	0	1	2
0	0.06	0.18	0.12
1	0.04	0.12	0.8

Are Q and G independent
(B) Random variables X1 and X2 are independent and identically distributed with probability density function

$$
f_{X}(x)=\left\{\begin{array}{c}
x / 2, \quad 0 \leq x \leq 2 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

What is the joint PDF $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) ?$

§ 5.7 Expected Value of a Function of Two Random Variables

Theorem 5.9

For Random variables X and Y, the expected value of $W=g(X, Y)$ is

$$
\begin{aligned}
& \text { Discrete: } \quad E[W]=\sum_{x \in S_{X}} \sum_{y \in S_{Y}} g(x, y) P_{X, Y}(x, y) \\
& \text { Continuous: } \quad E[W]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

Theorem 5.10

$$
E\left[a_{1} g_{1}(X, Y)+\cdots+a_{n} g_{n}(X, Y)\right]=a_{1} E\left[g_{1}(X, Y)\right]+\cdots+a_{n} E\left[g_{n}(X, Y)\right]
$$

§ 5.7 Expected Value of a Function of Two Random Variables

Theorem 5.11

For any two Random variables \boldsymbol{X} and \boldsymbol{Y}

$$
\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]
$$

Theorem 5.12

$$
\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

§ 5.7 Expected Value of a Function of Two Random Variables

Example

Random variables X and Y have joint PDF

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
5 x^{2} / 2, & -1 \leq x \leq 1,0 \leq y \leq x^{2} \\
0, \text { otherwise }
\end{array}\right.
$$

(a) What are $\mathrm{E}[\mathrm{X}]$ and $\operatorname{Var}[\mathrm{X}]$?
(b) What are $\mathrm{E}[\mathrm{Y}]$ and $\operatorname{Var}[\mathrm{Y}]$?
(c) What is $\operatorname{Cov}[\mathrm{X}, \mathrm{Y}]$?
(d) What is $\mathrm{E}[\mathrm{X}+\mathrm{Y}]$?
(e) What is $\operatorname{Var}[\mathrm{X}+\mathrm{Y}]$?

§ 5.8 Covariance, Correlation and Independence

Definition 5.5 Covariance

The covariance of two random variables \boldsymbol{X} and \boldsymbol{Y} is

$$
\operatorname{Cov}[X, Y]=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

Definition 5.6 Correlation Coefficient

The correlation coefficient of two random variables \boldsymbol{X} and \boldsymbol{Y} is

$$
\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}}=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}}
$$

§ 5.8 Covariance, Correlation and Independence

Theorem 5.13

If $\hat{X}=a X+b$ and $\hat{Y}=c Y+d$, then
(a) $\rho_{\hat{X}, \hat{Y}}=\rho_{X, Y}$
(b) $\operatorname{Cov}[\hat{X}, \hat{Y}]=\operatorname{acCOV}[X, Y]$

Theorem 5.14
$-1 \leq \rho_{X, Y} \leq 1$

Theorem 5.15

If X and Y are random variables such that $\boldsymbol{Y}=\boldsymbol{a} \boldsymbol{X}+\boldsymbol{b}$

$$
\rho_{X, Y}=\left\{\begin{array}{cc}
-1 & a<0 \\
0 & a=0 \\
1 & a>0
\end{array}\right.
$$

§ 5.8 Covariance, Correlation and Independence

Definition 5.7

The correlation of X and Y is $r_{X, Y}=E[X Y]$

Theorem 5.16
(a) $\operatorname{Cov}[X, Y]=r_{X, Y}-\mu_{X} \mu_{Y}$

The relation between covariance and correlation
(b) $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y] \quad$ The relation between variance and covariance
(c) If $\mathrm{X}=\mathrm{Y}, \operatorname{Cov}[X, Y]=\operatorname{Var}[X]=\operatorname{Var}[Y]$, and $r_{X, Y}=E\left[X^{2}\right]=E\left[Y^{2}\right]$

§ 5.8 Covariance, Correlation and Independence

Definition 5.8 Orthogonal Random Variables

Random variables X and Y are orthogonal if $r_{X, Y}=0$

Definition 5.9 Uncorrelated Random Variables

Random variables X and Y are uncorrelated if $\operatorname{Cov}[X, Y]=0$

§ 5.8 Covariance, Correlation and Independence

Theorem 5.17

For independent random variables X and Y,
(a) $\mathrm{E}[g(X) h(Y)]=E[g(X)] E[h(Y)]$
(b) $r_{X, Y}=E[X Y]=E[X] E[Y]$
(c) $\operatorname{Cov}[X, Y]=\rho_{X, Y}=0$
(c) $\operatorname{Var}[X, Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

§ 5.9 Bivariate Gaussian Random Variables

Definition 5.10 Bivariate Gaussian Random Variables

Random variable X and Y have a bivariate Gaussian PDF with parameters $\mu_{X}, \mu_{Y}, \sigma_{X}>0$ $\sigma_{Y}>0$ and $\rho_{X, Y}$ satisfying $-1<\rho_{X, Y}<1$ if

$$
f_{X, Y}(x, y)=\frac{\exp \left[\frac{\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-\frac{2 \rho_{X, Y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}}{2\left(1-\rho_{X, Y}^{2}\right)}\right]}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho_{X, Y}^{2}}}
$$

§ 5.9 Bivariate Gaussian Random Variables

Theorem 5.18

If X and Y are the bivariate Gaussian random variable in definition 5.10, X is the Gaussian (μ_{X}, σ_{X}) random variable and Y is the Gaussian (μ_{Y}, σ_{Y}) random variable:

$$
f_{X}(x)=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \exp \left(\frac{-\left(x-\mu_{X}\right)^{2}}{2 \sigma_{X}^{2}}\right) \quad f_{Y}(y)=\frac{1}{\sigma_{Y} \sqrt{2 \pi}} \exp \left(\frac{-\left(y-\mu_{Y}\right)^{2}}{2 \sigma_{Y}^{2}}\right)
$$

Theorem 5.19
Bivariate Gaussian random variable X and Y in definition 5.10, have correlation coefficient $\rho_{X, Y}$

Theorem 5.20
Bivariate Gaussian random variable X and Y are uncorrelated if and only if they are independent

§ 5.9 Bivariate Gaussian Random Variables

Theorem 5.21

If X and Y are the bivariate Gaussian random variable in definition 5.10, and W_{1} and W_{2} are given by the linearly independent equations

$$
W_{1}=a_{1} X+b_{1} Y \quad W_{2}=a_{2} X+b_{2} Y
$$

Then W_{1} and W_{2} are bivariate Gaussian random variable such that

$$
\begin{aligned}
& E\left[W_{i}\right]=a_{i} \mu_{X}+b_{i} \mu_{Y} \\
& \operatorname{Var}\left[W_{i}\right]=a_{i}^{2} \sigma_{X}^{2}+b_{i}^{2} \sigma_{Y}^{2}+2 a_{i} b_{i} \rho_{X, Y} \sigma_{X} \sigma_{Y} \\
& \operatorname{Cov}\left[W_{1}, W_{2}\right]=a_{1} a_{2} \sigma_{X}^{2}+b_{1} b_{2} \sigma_{Y}^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) \rho_{X, Y} \sigma_{X} \sigma_{Y}
\end{aligned}
$$

§ 5.10 Multivariate Probability Models

Definition 5.11 Multivariate Joint CDF
The joint CDF of $X_{1}, X_{2}, \ldots X_{n}$ is

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{N} \leq x_{n}\right]
$$

Definition 5.12 Multivariate Joint PMF

The joint PMF of the discrete random variable $X_{1}, X_{2}, \ldots X_{n}$ is

$$
P_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{N}=x_{n}\right]
$$

Definition 5.12 Multivariate Joint PDF
The joint PDF of the continuous random variable $X_{1}, X_{2}, \ldots X_{n}$ is

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\partial^{n} F_{X_{1} \ldots X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial x_{1} \partial x_{2} \ldots \partial x_{n}}
$$

§ 5.10 Multivariate Probability Models

Theorem 5.22

If $X_{1}, X_{2}, \ldots X_{n}$ are discrete random variables with joint PMF $P_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\begin{gathered}
P_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \\
\sum_{x_{1} \in S_{X 1}} \ldots \sum_{x_{n} \in S_{X_{n}}} P_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1
\end{gathered}
$$

Theorem 5.23
If $X_{1}, X_{2}, \ldots X_{n}$ are discrete random variables with joint PMF $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\begin{gathered}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0 \\
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=1 \\
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(u_{1}, u_{2}, \ldots, u_{n}\right) d u_{1} \ldots d u_{n}
\end{gathered}
$$

§ 5.10 Multivariate Probability Models

Theorem 5.24
The probability of an event A expressed in terms of the random variables $X_{1}, X_{2} \ldots X_{n}$

$$
\begin{aligned}
& \text { Discrete } \quad P[A]=\sum_{\left(x_{1}, \ldots, x_{n}\right) \in A} P_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \text { Continuous } P[A]=\int \ldots \iint_{A} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

