3.7 Impulse Response and Convolution

 $h[n] = Sys\{\delta[n]\} \qquad \qquad \delta[n] \longrightarrow Sys\{..\} \longrightarrow h[n]$

For a DTLTI system: the impulse response also constitutes a complete description of the system

- ♦ Finding the impulse response of a DTLTI system amounts to finding the forced response of the system when the forcing function is a unit-impulse: $x[n] = \delta[n]$
- ♦ In the case of difference equation with no feedback, the impulse response is found by direct substitution of the input signal $x[n] = \delta[n]$ into the difference equation.
- ♦ In the case of difference equation has feedback, then it is easier to first find the unit-step response of the system as the intermediate step, and to determine the impulse response from the unit-step response.
- ♦ A more practical method will be presented in Chapter 8 through the use of *z*-transform.

3.7 Impulse Response and Convolution

Example 3.17 Impulse response of moving average filters

Finding the impulse response of the length-2, length-4 and length-N moving average filters.

 $h_2[n] = \{1/2, 1/2\}$

$$h_4[n] = \{1/4, 1/4, 1/4, 1/4\}$$

$$h_{N}[n] = \begin{cases} \frac{1}{N} & n = 0, 1, \dots, N-1 \\ 0, & otherwise \end{cases}$$

3.7 Impulse Response and Convolution

Example 3.18 Impulse response of exponential smoother

Finding the impulse response of the exponential smoother of

 $y[n] = (1 - \alpha)y[n - 1] + \alpha x[n]$ with y[-1] = 0

3.7.2 Convolution Operation for DTLTI systems

The output signal **y**[**n**] of a DTLTI system is equal to the **convolution** of Its impulse response **h**[**n**] with the input signal **x**[**n**]

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

The symbol * represents *convolution operator*

3.7.2 Convolution Operation for DTLTI systems

Example 3.19 A simple discrete-time convolution example

A discrete-time system is described through the impulse response

Use the convolution operation to find the response of the system to the input signal

3.7.2 Convolution Operation for DTLTI systems

Example 3.20 A simple discrete-time convolution example

A discrete-time system is described through the impulse response

Use the convolution operation to find the response of the system to the input signal

$$x[n] = \{-3, 7, 4\}$$

 $n=N_1$

Assume the starting indices N_1 and N_2 are known constant

3.8 Causality in Discrete-time Systems

A system is said to be *causal* if the current value of the output signal depends only on current and past values of the input signal, but not on its future values

CTLTI system
$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

For *k* < 0, the term *x*[*n*-*k*] refers to future values of the input signal

Causality in DTLTI systems

For a DTLTI system to be causal, the impulse response of the system must be equal to zero for all negative values of its argument.

h[*n*] = 0 for all *n* < 0

3.9 Stability in Discrete-time Systems

A system is said to be *stable* in the *bounded-input bounded-output (BIBO)* sense if any bounded input signal is guaranteed to produce a bounded output signal

$$|x[n]| < B_x < \infty$$
 Implies that $|y[n]| < B_y < \infty$

For $\lambda < 0$, the term $x(t-\lambda)$ refers to future values of the input signal

Stability in DTLTI systems

For a DTLTI system to be stable, the impulse response of the system must be *absolute summable*.

$$\sum_{k=-\infty}^{\infty} \left| h[k] \right| < \infty$$