3.3 Difference Equations for Discrete-Time Systems

A Discrete-time system can be modeled with difference equations involving current, past, or future samples of input and output signals

Example 3.3 Moving-average filter
A length-N moving average filter is a simple system that produces an output equal to the arithmetic average of the most recent N samples of the input signal.

Compute y[100]:

$$
y[100]=\frac{x[100]+x[99]+\ldots+x[100-(N-1)]}{N}=\frac{1}{N} \sum_{k=0}^{N-1} x[100-k]
$$

The general expression for the length $-N$ moving average filter:

$$
\left.\left.y[n]=\frac{z[n]+z[n-1]+\ldots+z[n-(N-1) \mid}{N}=\frac{1}{N} \sum_{k=0}^{N-1} z \right\rvert\, n-k\right]
$$

3.3 Difference Equations for Discrete-Time Systems

Example 3.3 Moving-average filter

3.3 Difference Equations for Discrete-Time Systems

Example 3.3 Moving-average filter
Example: 100-Day moving average of the Dow lones index

3.3 Difference Equations for Discrete-Time Systems

Example 3.4 Length-2 moving-average filter

Solution:

A length-2 moving average filter produces an output by averaging the current input sample and the previous inpat sample.

$$
\left.\left.y\right|^{n}\right]=\frac{1}{2} x[n]+\frac{1}{2} x[n-1]
$$

For a few values of the index we can write the following set of equations:

$$
\begin{array}{ll}
n=0: & y[0]=\frac{1}{2} x[0]+\frac{1}{2} x[-1] \\
n=1: & y[1]=\frac{1}{2} x[1]+\frac{1}{2} x[0] \\
n=2: & y[2]=\frac{1}{2} x[2]+\frac{1}{2} x[1]
\end{array}
$$

3.3 Difference Equations for Discrete-Time Systems

Example 3.4 Length-2 moving-average filter

3.3 Difference Equations for Discrete-Time Systems

Example 3.6 Exponential smoother

Solution:

The current output sample is computed as a mix of the current input sample and the previous output sample through the equation

$$
y[n]=(1-a) y[n-1]+a z[n]
$$

The parameter α is a comstant in the range $0<\alpha<1$, and it controls the degree of smoothing.

$$
\begin{array}{ll}
n=0: & y[0]=(1-\alpha) y[-1]+\alpha x[0] \\
n=1: & y[1]=(1-\alpha) y[0]+\alpha z[1] \\
n=2: & y[2]=(1-\alpha) y[1]+\alpha z[2]
\end{array}
$$

3.3 Difference Equations for Discrete-Time Systems

Example 3.6 Exponential smoother

3.3 Difference Equations for Discrete-Time Systems

Example 3.7 Loan payments

Express the act of taking a bank loan an paying it back over time as a discrete-time system problem with monthly payments representing the Input signal and monthly balance representing the output signal.

" c " is the monthly interest rate

3.3 Difference Equations for Discrete-Time Systems

Example 3.7 Loan payments

Express the act of taking a bank loan an paying it back over time as a discrete-time system problem with monthly payments representing the Input signal and monthly balance representing the output signal.

" c " is the monthly interest rate

We can find out the monthly payment $\mathrm{x}[\mathrm{n}]$ by solving the difference equation

3.4 Constant-Coefficient Linear Difference Equations

Constant-coefficient difference equation

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Initial conditions:

$$
y\left[n_{0}-1\right], y\left[n_{0}-2\right], \ldots . y\left[n_{0}-N\right]
$$

It is typical, but not required, to have $n_{0}=0$.

3.4 Constant-Coefficient Linear Difference Equations

Iteratively solving difference equations.
Consider the difference equation for the exponential smoother of Ex.3.6

$$
y[n]=(1-\alpha) y[n-1]+\alpha x[n]
$$

\diamond Given the initial value $y[-1]$ of the output signal, $y[0]$ is found by

$$
y[0]=(1-\alpha) y[-1]+\alpha x[0]
$$

\diamond Knowing $y[0]$, the next output sample $y[1]$ is found by

$$
y[1]=(1-\alpha) y[0]+\alpha x[1]
$$

\checkmark Knowing $y[1]$, the next output sample $y[2]$ is found by

$$
y[2]=(1-\alpha) y[1]+\alpha x[2]
$$

3.5 Solving Difference Equations

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Initial conditions:

$$
y\left[n_{0}-1\right], y\left[n_{0}-2\right],, \ldots . ., \quad y\left[n_{0}-N\right]
$$

General solution:

$$
y[n]=y_{h}[n]+y_{p}[n]
$$

$\checkmark \boldsymbol{y}_{n}([n]$: is the homogeneous solution of the differential equation natural response
$\diamond y_{p}[n]$: is the particular solution of the differential equation
$\diamond y[n]=y_{h}[n]+y_{p}[n]$ is the forced solution of the differential equation forced response

3.5 Solving Difference Equations

Example 3.11 Natural response of exponential smoother

Determine the natural response of the exponential smoother defined as:
$y[n]=(1-\alpha) y[n-1]+\alpha x$
If $y[-1]=2$

3.5.1 Finding the natural response of a discretetime system

General homogeneous differential equation:

$$
\sum_{k=0}^{N} a_{k} y[n-k]=0
$$

Characteristic equation:

$$
\sum_{k=0}^{N} a_{k} z^{-k}=0
$$

To obtain the characteristic equation, substitute:

$$
y[n-k] \rightarrow z^{-k}
$$

3.5.1 Finding the natural response of a discretetime system

Write the characteristic equation in open form:

$$
a_{0}+a_{1} z^{-1}+\ldots .+a_{N-1} z^{-N+1}+a_{N} z^{-N}=0
$$

Multiply both sides by z^{N} to obtain

$$
a_{0} z^{N}+a_{1} z^{N-1}+\ldots .+a_{N-1} z^{1}+a_{N}=0
$$

In factored form:

$$
a_{0}\left(a-z_{1}\right)\left(a-z_{2}\right) \ldots\left(a-z_{N}\right)=0
$$

Homogeneous solution (assuming roots are distinct):

$$
y_{h}[n]=c_{1} z_{1}^{n}+c_{2} z_{2}^{n}+\ldots+c_{N} z_{N}^{n}=\sum_{k=1}^{N} c_{k} z_{k}^{n}
$$

Where unknown coefficients $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots ., \mathrm{c}_{\mathrm{N}}$ are determined by the initial condition, the terms z_{i}^{n} are called the modes of the system

3.5.1 Finding the natural response of a discretetime system

Example 3.12 Natural response of second-order system

A second-order system is described by the difference equation:

$$
y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=0
$$

Determine the natural response of this system for $\mathrm{n}>=0$ subject to initial condition:
$y[-1]=19$, and $y[-2]=53$

3.5.2 Finding the forced response of a discretetime system

Choosing a particular solution for various discrete-time input signals

Input signal	Particular solution
K (constant)	k_{1}
$K e^{a n}$	$k_{1} e^{a n}$
$K \cos \left(\Omega_{0} n\right)$	$k_{1} \cos \left(\Omega_{0} n\right)+k_{2} \sin \left(\Omega_{0} n\right)$
$K \sin \left(\Omega_{0} n\right)$	$k_{1} \cos \left(\Omega_{0} n\right)+k_{2} \sin \left(\Omega_{0} n\right)$
$K n^{m}$	$k_{m} n^{m}+k_{m-1} n^{m-1}+\ldots+k_{1} n+k_{0}$

The coefficient of the particular solution are determined from the Difference equation by assuming all initial conditions are equal to zero.

3.5.2 Finding the forced response of a discretetime system

Write the homogeneous difference equation

Solve homogeneous difference equation with undetermined coefficient

Find the form of the particular solution

Find the coefficients of the particular solution

Add the homogeneous and particular solution Together to obtain the total solution

3.5.2 Finding the forced response of a discretetime system

Example 3.14 Forced response of exponential smoother

Determine the forced response of the exponential smoother defined as:

$$
y[n]=(1-\alpha) y[n-1]+\alpha x[n]
$$

The input signal is a unit-step function, and $\mathrm{y}[-1]=2.5$

