Chapter 3. Analyzing Discrete-Time Systems in the Time Domain

Chapter Objectives

- ♦ Develop the notion of a *discrete-time* system.
- ♦ Learn simplifying assumptions made in the analysis of systems. Discuss the concepts of *linearity* and *time invariance*, and their significance.
- ♦ Explore the use of *differential equations* for representing discrete-time systems.
- ♦ Develop methods for solving differential equations to compute the output signal of a system in response to a specified input signal.
- ♦ Learn to represent a differential equation in the form of a block diagram that can be used as the basis for simulating a system.
- ♦ Discuss the significance of the *impulse response* as an alternative description form for linear and time-invariant systems.
- ♦ Learn how to compute the output signal for a linear and time-invariant system using *convolution*
- ♦ Learn the concepts of causality and stability as they relate to physically realizable and useable systems.

3.1 Introduction

In general, a discrete-time system is a mathematical formula, method or algorithm that defines a cause-effect relationship between a set of discrete-time input signals and a set of discrete-time output signals.

Sys{....} represents the transformation that defines the system in the time domain.

3.1 Introduction

In general, a discrete-time system is a mathematical formula, method or algorithm that defines a cause-effect relationship between a set of discrete-time input signals and a set of discrete-time output signals.

3.2.1 Linearity

Conditions for linearity

 $x_1[n], x_2[n]$: Any two input signals; α_1 : Arbitrary constant gain factor

Superposition principle (combine the two conditions into one)

$$Sys\{\alpha_1x_1[n] + \alpha_2x_2[n]\} = \alpha_1Sys\{x_1[n]\} + \alpha_2Sys\{x_2[n]\}$$

 $x_1[n], x_2[n]$: Any two input signals; α_1, α_2 Arbitrary constant gain factors

3.2.1 Linearity

If superposition works for the weighted sum of any two input signals, it also works for any arbitrary number of input signals.

3.2.1 Linearity

Example 3.1 Testing linearity of discrete-time systems

3.2.2 Time Invariance in Continuous-time Systems

Conditions for time-invariance

 $Sys{x[n]} = y[n]$ implies that $Sys{x[n-k]} = y[n-k]$

3.2.2 Time Invariance in Continuous-time Systems

time-invariance can be explained by the equivalence of the two system configurations

DTLTI systems: *discrete-time linear and time-invariant* system

3.2.2 Time Invariance in Discrete-time Systems

Example 3.2 Testing time invariance of discrete-time systems