2.7 Impulse Response and Convolution

h(t) = Sys{o(t)} o(t) — Sys{..; — ()

For a CTLTI system: the impulse response also constitutes a complete
description of the system

Finding the impulse response of a CTLTI system from the differential equation

1. Use a unit-step function for the input signal, and compute the forced response of
the system, i.e., the unit-step response.

2. Differentiate the unit-step response of the system to obtain the impulse response,
Le.,

This idea relies on the fact that differentiation is a linear operator

du(t) _1
" y= dt[SyS{u(f)}]

Sys{o(1)} = Sys{



2.7.1 Finding Impulse Response of a CTLTI system

Example 2.18 Unit-step response of the simple RC circuit
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Determine the impulse response of the first-order RC circuit. Assume

the system is initially relaxed, that is, there is no initial energy stored
in the system.



2.7.1 Finding Impulse Response of a CTLTI system

Example 2.18 Unit-step response of the simple RC circuit
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2.7.2 Convolution Operation for CTLTI systems

The output signal y(t) of a CTLTI system is equal to the convolution of
Its impulse response h(t) with the input signal x(t)

Y0 =x(O)*h(t)= [ x(AY(t = VdA

=h()*x(t)= [ h(A)x(t = V)dA

The symbol * represents convolution operator



2.7.2 Convolution Operation for CTLTI systems

Steps involved in computing the convolution of two signals

To compute the convolution of = (t) and h(t) at a specific time-instant ¢:

1.

Sketch the signal =z (A) as a function of the independent variable A. This
corresponds to a simple name change on the independent variable, and the graph
of the signal = (\) appears identical to the graph of the signal = (¢).

. For one specific value of t, sketch the signal h (£ — A) as a function of the

independent variable A. This task can be broken down into two steps as follows:

2a. Sketch A(—=A) as a function of A. This step amounts to time-reversal of A ().
2b. In h (A) substitute X —+ X — ¢, This step yields

h(=A) = h(t-=2X)
Al ot

and amounts to time-shifting A () by ¢,

3. Multiply the two signals in 1 and 2 to obtain f(A) =z (X)) h(t - A).

. Compute the area under the product f(A) = = (A) A(¢ — A) by integrating it

over the independent variable A. The result is the value of the output signal at
the specific time instant ¢,

. Repeat steps 1 through 4 for all values of t that are of interest.




2.7.2 Convolution Operation for CTLTI systems
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2.7.1 Finding Impulse Response of a CTLTI system

Example 2.20 Unit-step response of the simple RC circuit
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Determine the impulse response of the first-order RC circuit. Assume
the system is initially relaxed, that is, there is no initial energy stored
in the system. Solve the same problem using the convolution

operation.



2.7.1 Finding Impulse Response of a CTLTI system

Example 2.20 Unit-step response of the simple RC circuit




2.8 Causality in Continuous-time Systems

A system is said to be causal if the current value of the output signal depends
only on current and past values of the input signal, but not on its future values

CTLTI system
y(0) =h(O)*x(t)= [ h(A)x(t = 1)dA

For A <0, the term x(t-A) refers to future values of the input signal

Causality in CTLTI systems

For a CTLTI system to be causal, the impulse response of the system
must be equal to zero for all negative values of its argument.

h(t)=0 forallt<0



2.9 Stability in Continuous-time Systems

A system is said to be stable in the bounded-input bounded-output (BIBO)
sense if any bounded input signal is guaranteed to produce a bounded

output signal
CTLTI system

y(0) =h(O)*x(t)= [ h(A)x(t = 1)dA

For A <0, the term x(t-A) refers to future values of the input signal

Causality in CTLTI systems

For a CTLTI system to be stable, the impulse response of the system
must be absolute integrable.
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2.10 Approximate numerical solution of a
differential equation

First-order linear dlfferentlal equatlon

D 430 = —x(0
dt
Rearrange terms:
dy(t) 1

1
e y()+—x(¢
dt RCy() RC ©)

General form:

dy(t) b b
7 =g[t,y(®)]  where glt,y(¢)]= oC y(t)+ RC x(1)

dy()| Yo +T)-y(tp)
dt -, T

T: small step size



2.10 Approximate numerical solution of a
differential equation

Yo +T) - y(tp) _ glt0, y(1o)] Yt +T) = y(t9) +1glty, y(tp)]

T

For the RC circuit, using t, = 0:

y(T') = y(0)+Tg[0, y(¢y)]
1 1

=y(0)+ T[—Ey(()) + R—CX(O)]

y2T)=y(0)+Tg[T,y(T)]

1 1
=y +T= oy + 2 x(T)]

This is known as the Euler method. More sophisticated methods
Exist with better accuracy.



