1.4 Discrete-Time Signals

Discrete-time signals are not defined at all time instants. Instead, they are
defined only at time instants that are integer multiples of a fixed time
increment T, that is, at t =nT. Consequently, the mathematical model for a
discrete-time signal is a function x[n] in which independent variable n is an
Integer, and is referred to as the sample index.
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1.4.1 Signal Operations

Arithmetic Operations

Addition of a constant offset A to the signal x[n]
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1.4.1 Signal Operations

Arithmetic Operations

Multiplication of a constant gain B to the signal x/[n]

gl[n] = Bx[n]




1.4.1 Signal Operations

Arithmetic Operations

Summation of two signals x,[n] and x,[n]

gln] = x,[n] + x,[n]




1.4.1 Signal Operations

Arithmetic Operations

Multiplication of two signals x,[n] and x,[n]
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1.4.1 Signal Operations
Time shifting

A time shifted version of the signal x[n] can be obtained through
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1.4.1 Signal Operations

Time scaling

A time scaling version of the signal x[n] can be obtained through
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1.4.1 Signal Operations

Time scaling (downsampling)

gln] = x[2n]




1.4.1 Signal Operations

Time scaling (downsampling)

gln] = x[3n]




1.4.1 Signal Operations
Time scaling (upsampling)
g[n] = x[n/2] (how do we handle odd value of n?)

o[n] = x[n/2], ifn/2is.integer
0, otherwise




1.4.1 Signal Operations

Time reversal

A time reversal version of the signal x[n] can be obtained through
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1.4.2 Basic Building Blocks for discrete-time Signals

Basic building blocks

<> Unit-impulse function
<> Unit-step function
<> Unit-ramp function

<> Sinusoidal signals



1.4.2 Basic Building Blocks for discrete-time Signals

unit-impulse function

Mathematical definition.
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1.4.2 Basic Building Blocks for discrete-time Signals

unit-impulse function

Scaling and time shifting
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1.4.2 Basic Building Blocks for discrete-time Signals

Sampling property of the unit-impulse function
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1.4.2 Basic Building Blocks for Discrete-time Signals

Sifting property of the unit-impulse function
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1.4.2 Basic Building Blocks for Discrete-time Signals

unit-step function

1 if n>0
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Time shift of the unit-step function

1 if n>n,
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0 if n<n
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1.4.2 Basic Building Blocks for Discrete-time Signals

unit-ramp function
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1.4.2 Basic Building Blocks for Discrete-time Signals

Constructing a unit-ramp function from a unit-step
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1.4.2 Basic Building Blocks for Discrete-time Signals

Sinusoidal function
x[n]=Acos(2,n+0)

Where A is the amplitude of the signal, and $2,is the radian frequency which
has the unit of radians. The parameter 9 is the initial phase angle in radians.

The A controls the peak value of the signal, and the 6 affects the peaks locations



1.4.2 Basic Building Blocks for Discrete-time Signals

Characteristics of discrete-time sinusoids

9 For continuous-time sinusoidal signal x4 (t) = A cos (wpt): wy s in rad/s.
9 For discrete-time sinusoidal signal zin = A cos(Qon): Qo is in radians.

za (t) = A cos(wot + 0) zn] =24 (nT) 2 = w7,
=A cos(wpTyn + #) Fy = foT,
=A coc(EXfOT,n ' 0) Qo = 2N’F0




1.4.3 Impulse Decomposition for Discrete-time Signals

Consider an arbitrary discrete-time signal x[n]. Let us define a new
signal x,[n] by using the k-th sample of the signal x[n] in conjunction with
a time shifted unit-impulse function as

x[k], n=k
x [ n]= x[k10[n—k] =+

0, n=k




1.4.3 Impulse Decomposition for Discrete-time Signals

For the signal x[n] e[n] =L 3.7, 1%3, —1.5, 34,59}

z-an] = {37, 0, 0, 0, 0}
zon] = {0, 1.3, 0, 0, 0}
The components x,[n] are: z1[n] = {0, 0, -15, 0, 0}
zaln] = {0, 0, 0, 34, 0}
z3ln] = {0, 0, 0, 0, 5.9}

The signal x[n] can be reconstructed by adding these components together:
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1.4.4 Signal Classification

Real vs. complex signals

x[n] = x [n] + jx;[n] Cartesian form

or

_ JLx[n]
xln] = ‘x[n]‘e Polar form

x| n]

\x[n]\=[xf[n]+xf[n]]l/2 and LX[n]=tan'1LF[n]

x,[n]=|xln]|cos[£x[n]] ~ and  x,[n]=|x[n]|sin] Zx{n]]



1.4.4 Signal Classification

Periodic vs. non-periodic signals
A signal is said to be periodic if it satisfies
x[n+N] = x[n]

For all integer n, and for a specific value of N =0.
The N is referred as the period of the signal
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If a signal is periodic with period N, then it is also periodic with
periods of 2N, 3N, ..., kN, ...., where k is any integer



1.4.4 Signal Classification

Periodicity of discrete-time sinusoidal signals
A sinusoidal signal is said to be periodic if it satisfies:
AcosQrFn+0)=Acos(2rnF,[n+ N]+0)
= Acos(2rFn+2nxFN +0)

For this equation to hold, the arguments of the cosine functions
must differ by an integer multiple of 2. This results in

2nF N =27k
And consequently
Nok
E

0

The obtained N must be an integer value



1.4.4 Signal Classification

Example 1.6: Periodicity of a discrete-time sinusoidal signal




1.4.4 Signal Classification

Example 1.7: Periodicity of the two-tone discrete-time signal




1.4.5 Energy and Power Definitions

Energy of a signal

The energy of a real-valued signal x[n].

E_ = i x°[n]

n=—OO

If the results of the summation can be computed

The energy of a complex signal x[n]-

E = i |x[n]|2

n=—OO

If the results of the summation can be computed



1.4.5 Energy and Power Definitions

Time averaging operator

We use the operator < > to indicate time average.

< If the signal x[n] is periodic with period N, its time average can be

computed as. vt
<x[n]> = %gx[n]

< If the signal x[n] is non-periodic, its time average can be computed
as.

<x[n]> =A}ii130[ 2Ml " E x[n]}

n=—M



1.3.5 Energy and Power Definitions

Power of a signal

Normalized dVvE. pOwer {real s gml

Normalized avgl power (complex signal)
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1.4.5 Energy and Power Definitions

Energy Signals vs. Power signals
<> Energy signals are those that have finite energy and zero power

E <o and P =(

<> Power signals are those that have finite power and infinite energy

E — and P <



1.4.6 Symmetry Properties

even and odd symmetry

<> Areal-value signal is said to have even symmetry if it has
the property
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<> A real-value signal is said to have odd symmetry if it has
the property
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For all integer values of n 111”“““1.




1.4.6 Symmetry Properties

Decomposition into even and odd components

xln]=x[n]+x [n]

<> Even component

x[n]+ x[-n]
2

x,[n]= x,[-n]=x,[n]

<> odd component

x[n]-x[-n]
2

x,[n]=

x[-n]=-x[n]



1.4.6 Symmetry Properties

Symmetry properties for complex signals

<> A complex-value signal is said to have conjugate symmetry
if it satisfies

x[-n]=x"[n] for all integer n.
<> A complex-value signal is said to have conjugate antisymmetry

if it satisfies
x[-n]=-x"[n] for all integer n.

xln]=x.[n]+x,[n]

Conjugate symmetric component Conjugate antisymmetric component

Xgln]=

x[n]+x [-n] X [n] = x[n]-x[-n]
2 ¢ 2



