
1.4	Discrete-Time	Signals		

Discrete-)me	signals	are	not	defined	at	all	)me	instants.	Instead,	they	are		
defined	only	at	)me	instants	that	are	integer	mul)ples	of	a	fixed	)me		
increment	T,	that	is,	at	t	=	nT.			Consequently,	the	mathema)cal	model	for	a		
discrete-)me	signal	is	a	func)on	x[n]	in	which	independent	variable	n	is	an		
Integer,	and	is	referred	to	as	the	sample	index.	



1.4.1	Signal	Opera6ons	
Arithme6c	Opera6ons	

g[n]	=	x[n]	+	A	
Addi4on	of	a	constant	offset	A	to	the	signal	x[n]	



g[n]	=	Bx[n]		

Mul4plica4on	of	a	constant	gain	B	to	the	signal	x[n]	

1.4.1	Signal	Opera6ons	
Arithme6c	Opera6ons	



g[n]	=	x1[n]	+	x2[n]			

Summa6on	of	two	signals	x1[n]	and	x2[n]		

1.4.1	Signal	Opera6ons	
Arithme6c	Opera6ons	



g[n]	=	x1[n]	x2[n]			

Mul6plica6on	of	two	signals	x1[n]	and	x2[n]		

1.4.1	Signal	Opera6ons	

Arithme6c	Opera6ons	



g[n]	=	x[n-k]				

A	4me	shi?ed	version	of	the	signal	x[n]	can	be	obtained	through		

1.4.1	Signal	Opera6ons	
Time	shi?ing	

k:	integer	



g[n]	=	x[kn]				

A	4me	scaling	version	of	the	signal	x[n]	can	be	obtained	through		

1.4.1	Signal	Opera6ons	
Time	scaling	

k:	integer	



g[n]	=	x[2n]				

1.4.1	Signal	Opera6ons	
Time	scaling	(downsampling)	



g[n]	=	x[3n]				

1.4.1	Signal	Opera6ons	
Time	scaling	(downsampling)	



g[n]	=	x[n/2]	(how	do	we	handle	odd	value	of	n?)				

1.4.1	Signal	Opera6ons	
Time	scaling	(upsampling)	

g[n]= x[n / 2],
0,

!
"
#

$#

if	n/2	is	integer	
otherwise	



g[n]	=	x[-t]				

A	4me	reversal	version	of	the	signal	x[n]	can	be	obtained	through		

1.4.1	Signal	Opera6ons	

Time	reversal	



1.4.2	Basic	Building	Blocks	for	discrete-6me	Signals	

Basic	building	blocks	

² Unit-impulse	func6on	

² Unit-step	func6on	

² Unit-ramp	func6on	

² Sinusoidal	signals	



1.4.2	Basic	Building	Blocks	for	discrete-6me	Signals	

unit-impulse	func6on	

Mathema)cal	defini)on.	

δ[n]=
1, n = 0

0, n ≠ 0
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1.4.2	Basic	Building	Blocks	for	discrete-6me	Signals	

unit-impulse	func6on	

aδ[n− n1]=
a, n = n1

0, n ≠ n1
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Scaling	and	6me	shi?ing	



1.4.2	Basic	Building	Blocks	for	discrete-6me	Signals	

Sampling	property	of	the	unit-impulse	func6on	



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	

Si?ing	property	of	the	unit-impulse	func6on	



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	

unit-step	func6on	

u[n]=
1 if n > 0

0 if n < 0

!

"
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$
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u[n− n1]=
1 if n > n1

0 if n < n1
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#
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%
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	Time	shi?	of	the	unit-step	func)on	



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	

unit-ramp	func6on	

r[n]=
n, n ≥ 0

0, n < 0

"

#
$

%
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r[n]= nu[n]

or,	equivalently	



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	

Construc6ng	a	unit-ramp	func6on	from	a	unit-step	

r[n]= u[k]
k=−∞

∞

∑



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	

Sinusoidal	func6on	
x[n]= Acos(Ω0n+θ )

Where	A	is	the	amplitude	of	the	signal,	and						is	the	radian	frequency	which		
has	the	unit	of	radians.	The	parameter						is	the	ini4al	phase	angle	in	radians.		

Ω0

θ

The	A	controls	the	peak	value	of	the	signal,	and	the					affects	the	peaks	loca6ons	θ



1.4.2	Basic	Building	Blocks	for	Discrete-6me	Signals	
Characteris6cs	of	discrete-6me	sinusoids	



1.4.3	Impulse	Decomposi6on	for	Discrete-6me	Signals	

Consider	an	arbitrary	discrete-)me	signal	x[n].	Let	us	define	a	new		
signal	xk[n]	by	using	the	k-th	sample	of	the	signal	x[n]	in	conjunc)on	with		
a	)me	shiNed	unit-impulse	func)on	as	

xk[n]= x[k]δ[n− k]=
x[k], n = k

0, n ≠ k
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1.4.3	Impulse	Decomposi6on	for	Discrete-6me	Signals	

x[n]= xk[n]= x[k]δ[n− k]
k=−∞

∞

∑
k=−∞

∞

∑

For	the	signal	x[n]	

The	components	xk[n]	are:	

The	signal	x[n]	can	be	reconstructed	by	adding	these	components	together:	



1.4.4	Signal	Classifica6on	
Real	vs.	complex	signals	

																																																		
																																																				x[n]	=	xr[n]	+	jxi[n]												Cartesian	form	
												

x[n]= x[n] e j∠x[n]
or	

Polar	form	

xr[n]= x[n] cos ∠x[n][ ] xi[n]= x[n] sin ∠x[n][ ]and	

x[n] = xr
2[n]+ xi

2[n]!" #$
1/2

and	 ∠x[n]= tan−1 xi[n]
xr[n]
#
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1.4.4	Signal	Classifica6on	
Periodic	vs.	non-periodic	signals		

																		A		signal	is	said	to	be	periodic	if	it	sa)sfies	

																																				x[n+N]	=	x[n]	
For	all	integer	n,	and	for	a	specific	value	of												.		
The	N	is	referred	as	the	period	of	the	signal			
	

N ≠ 0

If	a	signal	is	periodic	with	period	N,	then	it	is	also	periodic	with		
periods	of	2N,	3N,	….,	kN,	….,	where	k	is	any	integer		



1.4.4	Signal	Classifica6on	

Periodicity	of	discrete-6me	sinusoidal	signals		
			A		sinusoidal	signal	is	said	to	be	periodic	if	it	sa)sfies:	

The	obtained	N	must	be	an	integer	value	

Acos(2πF0n+θ ) = Acos(2πF0[n+ N ]+θ )

= Acos(2πF0n+ 2πFN +θ )
For	this	equa)on	to	hold,	the	arguments	of	the	cosine	func)ons	
must	differ	by	an	integer	mul)ple	of	2π.	This	results	in	

2πF0N = 2πk
And	consequently	

N =
k
F0



1.4.4	Signal	Classifica6on	

Example	1.6:	Periodicity	of	a	discrete-Hme	sinusoidal	signal	



1.4.4	Signal	Classifica6on	

Example	1.7:	Periodicity	of	the	two-tone	discrete-Hme	signal	



1.4.5	Energy	and	Power	Defini6ons		
Energy	of	a	signal		

Ex = x2[n]
n=−∞

∞

∑
The	energy	of	a	real-valued	signal	x[n]:	

The	energy	of	a	complex	signal	x[n]:	

If	the	results	of	the	summa)on	can	be	computed	

Ex = x[n] 2
n=−∞

∞

∑

If	the	results	of	the	summa)on	can	be	computed	



1.4.5	Energy	and	Power	Defini6ons		
Time	averaging	operator		

We	use	the	operator	<		>	to	indicate	)me	average.		

x[n] = 1
N

x[n]
n=0

N−1

∑

²  If	the	signal	x[n]	is	periodic	with	period	N,	its	6me	average	can	be	
computed	as.	

	

²  If	the	signal	x[n]	is	non-periodic,	its	6me	average	can	be	computed	
as.	

	
x[n] = lim 1

2M +1
x[n]

n=−M

M

∑
#

$
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'
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M →∞



1.3.5	Energy	and	Power	Defini6ons		
Power	of	a	signal		



1.4.5	Energy	and	Power	Defini6ons		

Energy	Signals	vs.	Power	signals		

² Energy	signals	are	those	that	have	finite	energy	and	zero	power		

Ex <∞ and	 Px = 0

² Power	signals	are	those	that	have	finite	power	and	infinite	energy		

Ex →∞ and	 Px <∞



1.4.6	Symmetry	Proper6es		
even	and	odd	symmetry		

²  	A	real-value	signal	is	said	to	have	even	symmetry	if	it	has		
						the	property		

x[−n]= x[n]

²  	A	real-value	signal	is	said	to	have	odd	symmetry	if	it	has		
						the	property		

x[−n]= −x[n]

For	all	integer	values	of	n	

For	all	integer	values	of	n	



1.4.6	Symmetry	Proper6es		

Decomposi6on	into	even	and	odd	components			

² Even	component	

xe[n]=
x[n]+ x[−n]

2

² odd	component		

x[n]= xe[n]+ xo[n]

xe[−n]= xe[n]

xo[n]=
x[n]− x[−n]

2
xo[−n]= −xo[n]



1.4.6	Symmetry	Proper6es		
Symmetry	proper6es	for	complex	signals		

²  	A	complex-value	signal	is	said	to	have	conjugate	symmetry		
						if	it	sa)sfies		

x[−n]= x*[n]

²  	A	complex-value	signal	is	said	to	have	conjugate	an6symmetry		
						if	it	sa)sfies		

for	all	integer	n.	

x[−n]= −x*[n] for	all	integer	n.	

x[n]= xE[n]+ xO[n]

Conjugate	symmetric	component		
							

xE[n]=
x[n]+ x*[−n]

2

Conjugate	an6symmetric	component		
							

xO[n]=
x[n]− x*[−n]

2


