1.4 Discrete-Time Signals

Discrete-time signals are not defined at all time instants. Instead, they are defined only at time instants that are integer multiples of a fixed time increment T, that is, at t = nT. Consequently, the mathematical model for a discrete-time signal is a function x[n] in which independent variable n is an Integer, and is referred to as the sample index.

Arithmetic Operations

Addition of a constant offset **A** to the signal **x**[**n**]

Arithmetic Operations

Multiplication of a constant gain *B* to the signal *x[n]*

Arithmetic Operations

Summation of two signals $x_1[n]$ and $x_2[n]$

 $g[n] = x_1[n] + x_2[n]$

Arithmetic Operations

Multiplication of two signals x₁[n] and x₂[n]

 $g[n] = x_1[n] x_2[n]$

Time shifting

A *time shifted* version of the signal *x[n]* can be obtained through

Time scaling

A *time scaling* version of the signal *x*[n] can be obtained through

Time scaling (downsampling)

g[n] = x[2n]

Time scaling (downsampling)

g[n] = x[3n]

1.4.1 Signal Operations Time scaling (upsampling)

g[n] = x[n/2] (how do we handle odd value of n?)

 $g[n] = \begin{cases} x[n/2], & \text{if n/2 is integer} \\ 0, & \text{otherwise} \end{cases}$

Time reversal

A *time reversal* version of the signal *x*[n] can be obtained through

Basic building blocks

 \diamond Unit-impulse function

 \diamond Unit-step function

 \diamond Unit-ramp function

 \diamond Sinusoidal signals

unit-impulse function

Mathematical definition.

unit-impulse function

Scaling and time shifting

Sampling property of the unit-impulse function

Sifting property of the unit-impulse function

$$\sum_{n=-\infty}^{\infty} x[n] \delta[n-n_1] = x[n_1]$$

Using the sampling property:

$$\sum_{n=-\infty}^{\infty} x[n] \delta[n-n_1] = \sum_{n=-\infty}^{\infty} x[n_1] \delta[n-n_1]$$
$$= x[n_1] \sum_{n=-\infty}^{\infty} \delta[n-n_1]$$
$$= x[n_1]$$

unit-step function

$$u[n] = \begin{cases} 1 & if \quad n > 0 \\ 0 & if \quad n < 0 \end{cases}$$

Time shift of the unit-step function

٢

$$u[n-n_1] = \begin{cases} 1 & if \quad n > n_1 \\ 0 & if \quad n < n_1 \end{cases}$$

unit-ramp function

Constructing a unit-ramp function from a unit-step

$$r[n] = \sum_{k=-\infty}^{\infty} u[k]$$

Sinusoidal function

 $x[n] = A\cos(\Omega_0 n + \theta)$

Where **A** is the *amplitude* of the signal, and Ω_0 is the *radian frequency* which has the unit of *radians*. The parameter θ is the *initial phase angle* in *radians*.

The **A** controls the **peak value** of the signal, and the θ affects the **peaks locations**

1.4.2 Basic Building Blocks for Discrete-time Signals Characteristics of discrete-time sinusoids

• For continuous-time sinusoidal signal $x_a(t) = A \cos(\omega_0 t)$: ω_0 is in rad/s.

For discrete-time sinusoidal signal x[n] = A cos (Ω₀n): Ω₀ is in radians.

$$x_{a}(t) = A \cos(\omega_{0}t + \theta)$$

$$x[n] = x_{a}(nT_{s})$$

$$= A \cos(\omega_{0}T_{s}n + \theta)$$

$$= A \cos(2\pi f_{0}T_{s}n + \theta)$$

$$\Omega_{0} = 2\pi F_{0}$$

$$x_{a}(t)$$

$$\frac{x_{a}(t)}{T_{a}2T_{a}-T_{a}}$$

$$x_{a}(t)$$

$$x_{a}(t)$$

$$\frac{x_{a}(t)}{T_{a}2T_{a}}$$

$$x_{a}(t)$$

$$x$$

1.4.3 Impulse Decomposition for Discrete-time Signals

Consider an arbitrary discrete-time signal x[n]. Let us define a new signal $x_k[n]$ by using the k-th sample of the signal x[n] in conjunction with a time shifted unit-impulse function as

$$x_k[n] = x[k]\delta[n-k] = \begin{cases} x[k], & n=k \\ 0, & n \neq k \end{cases}$$

1.4.3 Impulse Decomposition for Discrete-time Signals

For the signal x[n] $x[n] = \{3.7, 1.3, -1.5, 3.4, 5.9\}$

$$\begin{array}{rcl} x_{-1}[n] &=& \{3.7, & 0, & 0, & 0, & 0\} \\ x_{0}[n] &=& \{0, & 1.3, & 0, & 0, & 0\} \\ x_{1}[n] &=& \{0, & 0, & -1.5, & 0, & 0\} \\ x_{2}[n] &=& \{0, & 0, & 0, & 3.4, & 0\} \\ x_{3}[n] &=& \{0, & 0, & 0, & 0, & 5.9\} \end{array}$$

The components **x**_k[**n**] are:

The signal **x**[**n**] can be reconstructed by adding these components together:

$$x[n] = \sum_{k=-\infty}^{\infty} x_k[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Real vs. complex signals

 $x[n] = x_r[n] + jx_i[n]$ Cartesian form

or

$$x[n] = |x[n]|e^{j \angle x[n]}$$
 Polar form

$$|x[n]| = [x_r^2[n] + x_i^2[n]]^{1/2}$$
 and $\angle x[n] = \tan^{-1} \left[\frac{x_i[n]}{x_r[n]} \right]$

 $x_r[n] = |x[n]| \cos[\angle x[n]]$ and $x_i[n] = |x[n]| \sin[\angle x[n]]$

Periodic vs. non-periodic signals

A signal is said to be *periodic* if it satisfies

x[n+N] = x[n]

For all integer \boldsymbol{n} , and for a specific value of $N \neq 0$. The \boldsymbol{N} is referred as the *period* of the signal

If a signal is periodic with period *N*, then it is also periodic with periods of *2N*, *3N*,, *kN*,, where *k* is any integer

Periodicity of discrete-time sinusoidal signals

A sinusoidal signal is said to be *periodic* if it satisfies:

$$A\cos(2\pi F_0 n + \theta) = A\cos(2\pi F_0 [n + N] + \theta)$$

 $= A\cos(2\pi F_0 n + 2\pi FN + \theta)$

For this equation to hold, the arguments of the cosine functions must differ by an integer multiple of 2π . This results in

$$2\pi F_0 N = 2\pi k$$

And consequently

$$N = \frac{k}{F_0}$$

The obtained **N** must be an **integer value**

Example 1.6: Periodicity of a discrete-time sinusoidal signal

Example 1.7: Periodicity of the two-tone discrete-time signal

1.4.5 Energy and Power Definitions Energy of a signal

The *energy* of a *real-valued* signal *x[n]*:

$$E_x = \sum_{n=-\infty}^{\infty} x^2 [n]$$

If the results of the summation can be computed

The *energy* of a *complex* signal *x[n]*:

$$E_x = \sum_{n=-\infty}^{\infty} \left| x[n] \right|^2$$

If the results of the summation can be computed

1.4.5 Energy and Power Definitions

Time averaging operator

We use the operator < > to indicate time average.

♦ If the signal x[n] is periodic with period N, its time average can be computed as.

$$\langle x[n] \rangle = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

♦ If the signal x[n] is non-periodic, its time average can be computed as.

$$\langle x[n] \rangle = \lim_{M \to \infty} \left[\frac{1}{2M+1} \sum_{n=-M}^{M} x[n] \right]$$

1.3.5 Energy and Power Definitions

Power of a signal

Periodic signal:

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n]$$

Non-periodic signal:

$$P_{\pi} = \lim_{M \to \infty} \left[\frac{1}{2M+1} \sum_{n=-M}^{M} \pi^2[n] \right]$$

Normalized avg power (complex signal)
$$P_{x}=ig\langle |x[n]|^{2}ig
angle$$

Periodic signal:

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} \left| x[n] \right|^2$$

Non-periodic signal:

$$P_{x} = \lim_{M \to \infty} \left[\frac{1}{2M+1} \sum_{n=-M}^{M} \left| z[n] \right|^{2} \right]$$

1.4.5 Energy and Power Definitions

Energy Signals vs. Power signals

Energy signals are those that have finite energy and zero power

$$E_x < \infty$$
 and $P_x = 0$

Power signals are those that have finite power and infinite energy

$$E_x \to \infty$$
 and $P_x < \infty$

1.4.6 Symmetry Properties

even and odd symmetry

♦ A real-value signal is said to have even symmetry if it has the property

x[-n] = x[n]

For all integer values of *n*

A real-value signal is said to have odd symmetry if it has the property

x[-n] = -x[n]
For all integer values of *n*

1.4.6 Symmetry Properties

Decomposition into even and odd components

$$x[n] = x_e[n] + x_o[n]$$

\diamond Even component

$$x_{e}[n] = \frac{x[n] + x[-n]}{2} \qquad x_{e}[-n] = x_{e}[n]$$

 \diamond odd component

$$x_{o}[n] = \frac{x[n] - x[-n]}{2} \qquad x_{o}[-n] = -x_{o}[n]$$

1.4.6 Symmetry Properties

Symmetry properties for *complex* signals

♦ A complex-value signal is said to have conjugate symmetry if it satisfies

$$x[-n] = x^*[n]$$
 for all integer *n*.

A complex-value signal is said to have conjugate antisymmetry if it satisfies

 $x[-n] = -x^*[n]$ for all integer *n*.

$$x[n] = x_E[n] + x_O[n]$$

Conjugate symmetric component

Conjugate antisymmetric component

$$x_{O}[n] = \frac{x[n] - x^{*}[-n]}{2}$$

$$x_E[n] = \frac{x[n] + x^*[-n]}{2}$$