1.4 Discrete-Time Signals

Discrete-time signals are not defined at all time instants. Instead, they are defined only at time instants that are integer multiples of a fixed time increment \boldsymbol{T}, that is, at $\boldsymbol{t}=\boldsymbol{n T}$. Consequently, the mathematical model for a discrete-time signal is a function $\boldsymbol{x}[\boldsymbol{n}]$ in which independent variable \boldsymbol{n} is an Integer, and is referred to as the sample index.

1.4.1 Signal Operations

Arithmetic Operations
Addition of a constant offset A to the signal $x[n]$
$g[n]=x[n]+A$

1.4.1 Signal Operations

Arithmetic Operations
Multiplication of a constant gain B to the signal $x[n]$

$$
g[n]=B x[n]
$$

1.4.1 Signal Operations

Arithmetic Operations
Summation of two signals $x_{1}[n]$ and $x_{2}[n]$

$$
g[n]=x_{1}[n]+x_{2}[n]
$$

1.4.1 Signal Operations

Arithmetic Operations

Multiplication of two signals $x_{1}[n]$ and $x_{2}[n]$

$$
g[n]=x_{1}[n] x_{2}[n]
$$

1.4.1 Signal Operations

Time shifting
A time shifted version of the signal $x[n]$ can be obtained through

1.4.1 Signal Operations

Time scaling
A time scaling version of the signal $x[\mathrm{n}]$ can be obtained through

$g[n]=x[k n]$

k : integer

1.4.1 Signal Operations

Time scaling (downsampling)

$$
g[n]=x[2 n]
$$

1.4.1 Signal Operations

Time scaling (downsampling)

$$
g[n]=x[3 n]
$$

1.4.1 Signal Operations

Time scaling (upsampling)
$\boldsymbol{g}[n]=x[n / 2]$ (how do we handle odd value of n ?)

$$
g[n]=\left\{\begin{array}{cl}
x[n / 2], & \text { if } \mathrm{n} / 2 \text { is integer } \\
0, & \text { otherwise }
\end{array}\right.
$$

1.4.1 Signal Operations

Time reversal
A time reversal version of the signal $x[\mathrm{n}]$ can be obtained through

1.4.2 Basic Building Blocks for discrete-time Signals

Basic building blocks

\diamond Unit-impulse function
\diamond Unit-step function
\diamond Unit-ramp function
\diamond Sinusoidal signals

1.4.2 Basic Building Blocks for discrete-time Signals

unit-impulse function

Mathematical definition.

$$
\delta[n]=\left\{\left.\begin{array}{ll}
1, & n=0 \\
0, & n \neq 0
\end{array} \ldots \ldots\right|_{0} ^{1}\right.
$$

1.4.2 Basic Building Blocks for discrete-time Signals

unit-impulse function

Scaling and time shifting

$$
a \delta\left[n-n_{1}\right]= \begin{cases}a, & n=n_{1} \\ 0, & n \neq n_{1}\end{cases}
$$

1.4.2 Basic Building Blocks for discrete-time Signals

Sampling property of the unit-impulse function

$$
x[n] \delta\left[n-n_{1}\right]=z\left[n_{1}\right] \delta\left[n-n_{1}\right]
$$

$$
x[n] \delta\left[n-n_{1}\right]=\left\{\begin{array}{cc}
x\left[n_{1}\right], & n=n_{1} \\
0, & n \neq n_{1}
\end{array}\right.
$$

1.4.2 Basic Building Blocks for Discrete-time Signals

Sifting property of the unit-impulse function

$$
\left.\sum_{n=-\infty}^{\infty} x[n] \delta \mid n-n_{2}\right]=x\left[n_{1}\right]
$$

Using the sampling property:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} x[n] \delta\left[n-n_{1}\right] & =\sum_{n=-\infty}^{\infty} x\left[n_{1}\right] \delta\left[n-n_{1}\right] \\
& =z\left[n_{1}\right] \sum_{n=-\infty}^{\infty} \delta\left[n-n_{1}\right]
\end{aligned}
$$

$$
=z\left[n_{1}\right]
$$

1.4.2 Basic Building Blocks for Discrete-time Signals

unit-step function

$$
u[n]=\left\{\begin{array}{lll}
1 & \text { if } & n>0 \\
0 & \text { if } & n<0
\end{array}\right.
$$

Time shift of the unit-step function

$$
u\left[n-n_{1}\right]=\left\{\begin{array}{lll}
1 & \text { if } & n>n_{1} \\
0 & \text { if } & n<n_{1}
\end{array}\right.
$$

1.4.2 Basic Building Blocks for Discrete-time Signals
unit-ramp function
or, equivalently
$r[n]=n u[n]$

1.4.2 Basic Building Blocks for Discrete-time Signals

Constructing a unit-ramp function from a unit-step

$$
r[n]=\sum_{k=-\infty}^{\infty} u[k]
$$

1.4.2 Basic Building Blocks for Discrete-time Signals

$$
\begin{gathered}
\text { Sinusoidal function } \\
x[n]=A \cos \left(\Omega_{0} n+\theta\right)
\end{gathered}
$$

Where \boldsymbol{A} is the amplitude of the signal, and Ω_{0} is the radian frequency which has the unit of radians. The parameter θ is the initial phase angle in radians.

The \boldsymbol{A} controls the peak value of the signal, and the θ affects the peaks locations

1.4.2 Basic Building Blocks for Discrete-time Signals

Characteristics of discrete-time sinusoids

- For continuous-time sinusoidal signal $x_{a}(t)=A \cos \left(\omega_{0} t\right): \omega_{0}$ is in rad/s.
- For discrete-time sinusoidal signal $x[n]=A \cos \left(\Omega_{0} n\right): \Omega_{0}$ is in radians.

$$
\begin{aligned}
& x_{a}(t)=A \cos \left(\omega_{0} t+\theta\right) \\
& \begin{aligned}
x[n] & =x_{a}\left(n T_{z}\right) \\
& =A \cos \left(\omega_{0} T_{s} n+\theta\right) \\
& =A \cos \left(2 \pi f_{0} T_{s} n+\theta\right)
\end{aligned} \\
& \begin{aligned}
\Omega_{0} & =\omega_{0} T_{s} \\
F_{0} & =f_{0} T_{s} \\
\Omega_{0} & =2 \pi F_{0}
\end{aligned}
\end{aligned}
$$

1.4.3 Impulse Decomposition for Discrete-time Signals

Consider an arbitrary discrete-time signal $x[n]$. Let us define a new signal $x_{k}[n]$ by using the k-th sample of the signal $\boldsymbol{x}[n]$ in conjunction with a time shifted unit-impulse function as

$$
x_{k}[n]=x[k] \delta[n-k]=\left\{\begin{array}{cc}
x[k], & n=k \\
0, & n \neq k
\end{array}\right.
$$

1.4.3 Impulse Decomposition for Discrete-time Signals

For the signal $\boldsymbol{x}[\boldsymbol{n}]$

$$
x[n]=\left\{3.7,1_{\uparrow} .3,-1.5,3.4,5.9\right\}
$$

$$
\begin{align*}
x_{-1}[n] & =\{3.7, \\
\uparrow & 0, \\
x_{0}[n] & =\{0, \\
\{0, & 1.3,
\end{align*} 0, \quad 0,
$$

The components $\boldsymbol{x}_{\boldsymbol{k}}[\boldsymbol{n}]$ are: $x_{1}[n]=\left\{\begin{array}{lllll}0, & 0, & -1.5, & 0, & 0\end{array}\right\}$

$$
\left.\left.\begin{array}{l}
x_{2}[n]=\{0, \\
0, \\
\uparrow
\end{array} \begin{array}{lllll}
0, & 3.4, & 0
\end{array}\right\}\right\}
$$

The signal $\boldsymbol{x}[\boldsymbol{n}]$ can be reconstructed by adding these components together:

$$
x[n]=\sum_{k=-\infty}^{\infty} x_{k}[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

1.4.4 Signal Classification

Real vs. complex signals

$$
x[n]=x_{r}[n]+j x_{i}[n]
$$

Cartesian form

$$
x[n]=|x[n]| e^{j \angle x[n]}
$$

Polar form

$$
\begin{array}{lll}
|x[n]|=\left[x_{r}^{2}[n]+x_{i}^{2}[n]\right]^{1 / 2} & \text { and } & \angle x[n]=\tan ^{-1}\left[\frac{x_{i}[n]}{x_{r}[n]}\right] \\
x_{r}[n]=|x[n]| \cos [\angle x[n]] & \text { and } & x_{i}[n]=|x[n]| \sin [\angle x[n]]
\end{array}
$$

1.4.4 Signal Classification

Periodic vs. non-periodic signals
A signal is said to be periodic if it satisfies

$$
x[n+N]=x[n]
$$

For all integer \boldsymbol{n}, and for a specific value of $N \neq 0$.
The \boldsymbol{N} is referred as the period of the signal

If a signal is periodic with period N, then it is also periodic with periods of $2 N, 3 N, \ldots ., k N, \ldots$. , where k is any integer

1.4.4 Signal Classification

Periodicity of discrete-time sinusoidal signals

A sinusoidal signal is said to be periodic if it satisfies:

$$
\begin{aligned}
A \cos \left(2 \pi F_{0} n+\theta\right) & =A \cos \left(2 \pi F_{0}[n+N]+\theta\right) \\
& =A \cos \left(2 \pi F_{0} n+2 \pi F N+\theta\right)
\end{aligned}
$$

For this equation to hold, the arguments of the cosine functions must differ by an integer multiple of 2π. This results in

$$
2 \pi F_{0} N=2 \pi k
$$

And consequently

$$
N=\frac{k}{F_{0}}
$$

The obtained \boldsymbol{N} must be an integer value

1.4.4 Signal Classification

Example 1.6: Periodicity of a discrete-time sinusoidal signal

1.4.4 Signal Classification

Example 1.7: Periodicity of the two-tone discrete-time signal

1.4.5 Energy and Power Definitions
 Energy of a signal

The energy of a real-valued signal $x[n]$:

$$
E_{x}=\sum_{n=-\infty}^{\infty} x^{2}[n]
$$

If the results of the summation can be computed

The energy of a complex signal $x[n]$:

$$
E_{x}=\sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

If the results of the summation can be computed

1.4.5 Energy and Power Definitions

Time averaging operator

We use the operator < > to indicate time average.
\diamond If the signal $x[n]$ is periodic with period \boldsymbol{N}, its time average can be computed as.

$$
\langle x[n]\rangle=\frac{1}{N} \sum_{n=0}^{N-1} x[n]
$$

\diamond If the signal $x[n]$ is non-periodic, its time average can be computed as.

$$
\langle x[n]\rangle=\lim _{M \rightarrow \infty}\left[\frac{1}{2 M+1} \sum_{n=-M}^{M} x[n]\right]
$$

1.3.5 Energy and Power Definitions

Power of a signal

Normalized avg. power (real signal)

$$
P_{\mathrm{v}}=\left\langle z^{2}[n]\right\rangle
$$

Periodic signal:

$$
P_{x}=\frac{1}{N} \sum_{n=0}^{N-1} z^{2}[n]
$$

Non-periodic signal:

$$
P_{n}=\lim _{M \rightarrow \infty}\left[\frac{1}{2 M+1} \sum_{n=-M}^{M} z^{2}[n]\right]
$$

$$
\left.P_{n}=\left.\langle | x[n]\right|^{2}\right\rangle
$$

Periodic signal:

$$
P_{z}=\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}
$$

Non-periodic signal:

$$
P_{x}=\lim _{M \rightarrow \infty}\left[\frac{1}{2 M+1} \sum_{n=-M}^{M}|z[n]|^{2}\right]
$$

1.4.5 Energy and Power Definitions

Energy Signals vs. Power signals

\diamond Energy signals are those that have finite energy and zero power

$$
E_{x}<\infty \quad \text { and } \quad P_{x}=0
$$

\diamond Power signals are those that have finite power and infinite energy

$$
E_{x} \rightarrow \infty \text { and } P_{x}<\infty
$$

1.4.6 Symmetry Properties

even and odd symmetry

\diamond A real-value signal is said to have even symmetry if it has the property

$$
x[-n]=x[n]
$$

For all integer values of n

\diamond A real-value signal is said to have odd symmetry if it has the property

$$
x[-n]=-x[n]
$$

For all integer values of n

1.4.6 Symmetry Properties

Decomposition into even and odd components

$$
x[n]=x_{e}[n]+x_{o}[n]
$$

\checkmark Even component

$$
x_{e}[n]=\frac{x[n]+x[-n]}{2} \quad x_{e}[-n]=x_{e}[n]
$$

\diamond odd component

$$
x_{o}[n]=\frac{x[n]-x[-n]}{2} \quad x_{o}[-n]=-x_{o}[n]
$$

1.4.6 Symmetry Properties

Symmetry properties for complex signals
\diamond A complex-value signal is said to have conjugate symmetry if it satisfies

$$
x[-n]=x^{*}[n] \quad \text { for all integer } n .
$$

\diamond A complex-value signal is said to have conjugate antisymmetry if it satisfies

$$
\begin{aligned}
& x[-n]=-x^{*}[n] \quad \text { for all integer } n . \\
& x[n]=x_{E}[n]+x_{O}[n]
\end{aligned}
$$

Conjugate symmetric component

$$
x_{E}[n]=\frac{x[n]+x^{*}[-n]}{2}
$$

Conjugate antisymmetric component

$$
x_{o}[n]=\frac{x[n]-x^{*}[-n]}{2}
$$

