### 1.3 Continuous-Time Signals

Consider $x(t)$, a mathematical function of time chosen to approximate the strength of the physical quantity at the time instant $t$. in this relationship, $t$ is the independent variable, and $x$ is the dependent variable. The signal $x(t)$ is referred to as a continuous-time signal or an analog signal.


### 1.3 Continuous-Time Signals

Some signals can be described analytically. For example

$$
x(t)=5 \sin (12 t)
$$



### 1.3 Continuous-Time Signals

## Matlab code of $x(t)=5 \sin (12 t)$ :

```
clear
close all
% Script : matex_1_1a
%
% Construct a vector of time instants.
t = linspace(0,5,1000);
% Compute the signal at time instants in vector "t".
x1 = 5* sin(12*t);
hh = plot(t,x1);
set(hh,'LineWidth',3,'Color','r');
hh = xlabel('Time (sec)');
set(hh,'FontSize',26,'FontWeight','bold');
hh = ylabel('x_1(t)');
set(hh,'FontSize',26,'FontWeight','bold');
set(gca,'FontSize',26,'FontWeight','bold');
grid
```


### 1.3.1 Signal Operations

## Arithmetic Operations

Addition of a constant offset $\boldsymbol{A}$ to the signal $x(t)$

$$
g(t)=x(t)+A
$$





### 1.3.1 Signal Operations

Arithmetic Operations
Multiplication of a constant gain $B$ to the signal $x(t)$

$$
g(t)=B x(t)
$$





### 1.3.1 Signal Operations

## Arithmetic Operations

Summation of two signals $x_{1}(t)$ and $x_{2}(t)$

$$
g(t)=x_{1}(t)+x_{2}(t)
$$




### 1.3.1 Signal Operations

## Arithmetic Operations

Multiplication of two signals $x_{1}(t)$ and $x_{2}(t)$


$$
g(t)=x_{1}(t) * x_{2}(t)
$$




### 1.3.1 Signal Operations

Time shifting
A time shifted version of the signal $x(t)$ can be obtained through


### 1.3.1 Signal Operations

Time scaling
A time scaling version of the signal $x(t)$ can be obtained through


$$
g(t)=x(a t)
$$



### 1.3.1 Signal Operations

Time reversal
A time shifted version of the signal $x(t)$ can be obtained through

$$
g(t)=x(-t)
$$




# 1.3.2 Basic Building Blocks for Continuous-time Signals 

## Basic building blocks

$\diamond$ Unit-impulse function
$\diamond$ Unit-step function
$\diamond$ Unit-pulse function
$\diamond$ Unit-ramp function
$\diamond$ Unit-triangle function
$\diamond$ Sinusoidal signals

### 1.3.2 Basic Building Blocks for Continuous-time Signals

unit-impulse function

An arrow is used to indicate the location of that undefined amplitude.


### 1.3.2 Basic Building Blocks for Continuous-time Signals

 unit-impulse function$$
\begin{align*}
& \delta(t)=\left\{\begin{aligned}
0 \text { if } t \neq 0 \\
\text { undefined if } t=0
\end{aligned}\right.  \tag{1.16}\\
& \int_{-\infty}^{\infty} \delta(t) d t=1 \tag{1.17}
\end{align*}
$$

Note: Eqn. 1.16 by itself represents an incomplete definition of the function $\delta(t)$ since the amplitude of it is defined only when $t \neq 0$, and is undefined at the time instant $t=0$. The Eqn. 1.17 fills this void.

### 1.3.2 Basic Building Blocks for Continuous-time Signals

## unit-impulse function

Scaling and time shifting

$$
a \delta\left(t-t_{1}\right)=\left\{\begin{array}{c}
0 \text { if } t \neq t_{1} \\
\text { undefined if } t=t_{1}
\end{array}\right.
$$

and

$$
\int_{-\infty}^{\infty} a \delta\left(t-t_{1}\right) d t=a
$$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

## unit-impulse function

An arrow is used to indicate the location of that undefined amplitude. $\delta(t)$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

## unit-impulse function

Obtaining unit-impulse function from a rectangular pulse

$$
\text { Let } q(t)=\left\{\begin{array}{cl}
\frac{1}{a}, & |t|<\frac{a}{2} \\
0, & |t|>\frac{a}{2}
\end{array}\right.
$$


(a)

(b)

(c)

$$
\delta(t)=\lim _{a \rightarrow 0}[g(t)]
$$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

The impulse function has two fundamental properties that are useful
$\diamond$ Sampling property of the impulse function

$$
f(t) \delta\left(t-t_{1}\right)=f\left(t_{1}\right) \delta\left(t-t_{1}\right)
$$

$\diamond$ Sifting property of the impulse function

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{1}\right) d t=f\left(t_{1}\right)
$$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

Sampling property of the unit-impulse function

$$
f(t) \delta\left(t-t_{1}\right)=f\left(t_{1}\right) \delta\left(t-t_{1}\right)
$$



The function $f(t)$ must be continuous at $t=t_{1}$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

Sifting property of the unit-impulse function

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(t) \delta\left(t-t_{1}\right) d t=f\left(t_{1}\right) \\
& \int_{t_{1}-\Delta t}^{t_{1}+\Delta t} f(t) \delta\left(t-t_{1}\right) d t=f\left(t_{1}\right)
\end{aligned}
$$

The function $f(t)$ must be continuous at $t=t_{1}$. Also, $\Delta t>0$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

 unit-step function$$
u(t)=\left\{\begin{array}{lll}
1 & \text { if } & t>0  \tag{1.30}\\
0 & \text { if } & t<0
\end{array}\right.
$$



Time shift of the unit-step function

$$
u\left(t-t_{1}\right)=\left\{\begin{array}{lll}
1 & \text { if } & t>t_{1}  \tag{1.31}\\
0 & \text { if } & t<t_{1}
\end{array}\right.
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

Using the unit-step function to turn a signal on at a specified time instant

$$
x(t)=\sin \left(2 \pi f_{0} t\right) u\left(t-t_{1}\right)=\left\{\begin{array}{cl}
\sin \left(2 \pi f_{0} t\right) & \text { if } t>t_{1} \\
0 \text { if } t<t_{1}
\end{array}\right.
$$




### 1.3.2 Basic Building Blocks for Continuous-time Signals

Using the unit-step function to turn a signal off at a specified time instant

$$
x(t)=\sin \left(2 \pi f_{0} t\right) u\left(-t+t_{1}\right)=\left\{\begin{array}{cll}
\sin \left(2 \pi f_{0} t\right) & \text { if } t<t_{1} \\
0 & \text { if } & t>t_{1}
\end{array}\right.
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

The relationship between unit-step and unit-impulse functions

$$
u(t)=\int_{-\infty}^{\infty} \delta(\lambda) d \lambda \quad \Longleftrightarrow \quad \delta(t)=\frac{d u}{d t}
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

unit-pulse function

$$
\Pi(t)= \begin{cases}1, & |t|<1 / 2 \\ 0, & |t|>1 / 2\end{cases}
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-step functions

$$
\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-impulse functions

$$
\begin{aligned}
& \Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)=\int_{-\infty}^{t+1 / 2} \delta(\lambda) d \lambda-\int_{-\infty}^{t-1 / 2} \delta(\lambda) d \lambda=\int_{t-1 / 2}^{t+1 / 2} \delta(\lambda) d \lambda \\
& \int_{t-1 / 2}^{t+1 / 2} \delta(\lambda) d \lambda=\left\{\begin{array}{cc}
1, & t-\frac{1}{2}<0, \text { and }, t+\frac{1}{2}>0 \\
0, & \text { otherwise }
\end{array}\right. \\
&=\left\{\begin{aligned}
1, & -\frac{1}{2}<t<\frac{1}{2} \\
0, & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-impulse functions

$$
\Pi(t)=\int_{t-1 / 2}^{t+1 / 2} \delta(\lambda) d \lambda
$$





### 1.3.2 Basic Building Blocks for Continuous-time Signals

 unit-ramp function$$
r(t)=\left\{\begin{array}{cc}
t, \quad t \geq 0 \\
0, \quad t<0
\end{array} \quad \text { or, equivalently } r(t)=t u(t)\right.
$$

### 1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-ramp function from a unit-step

$$
r(t)=\int_{-\infty}^{\infty} u(\lambda) d \lambda
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

unit-triangle function

$$
\Lambda(t)=\left\{\begin{array}{c}
t+1, \quad-1 \leq t<0 \\
-t+1, \quad 0 \leq t<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$



### 1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-triangle using unit-ramp functions

$$
\Lambda(t)=r(t+1)-2 r(t)+r(t+1)
$$





### 1.3.2 Basic Building Blocks for Continuous-time Signals

## Sinusoidal function

$$
x(t)=A \cos \left(\omega_{0} t+\theta\right)
$$

Where $\boldsymbol{A}$ is the amplitude of the signal, and $\omega_{0}$ is the radian frequency which has the unit of radians per second, abbreviated as rad/s. The parameter $\theta$ is the initial phase angle in radians. The radian frequency can be expressed as $\omega_{0}=2 \pi f_{0}$ where $f_{0}$ is the frequency in Hz .


The $\boldsymbol{A}$ controls the peak value of the signal, and the $\theta$ affects the peaks locations

### 1.3.3 Impulse decomposition for continuous-time signals

rough approximation to the signal $x(t)$

$$
\hat{x}(t)=\sum_{n=-\infty}^{\infty} x(n \Delta) \prod\left(\frac{t-n \Delta}{\Delta}\right)
$$



Take the limit as $\Delta \rightarrow 0 \quad x(t)=\lim _{\Delta \rightarrow 0}[\hat{x}(t)]$

$$
=\int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d \lambda
$$

### 1.3.4 Signal Classification

## Real vs. complex signals

$>$ A real signal is one in which the amplitude is real-value at all time instants.

$$
x(t)=u \quad \text { where } u \text { is the voltage }
$$

$>$ A complex signal is one in which the amplitude may also have an imaginary part.

$$
\begin{aligned}
& x(t)=x_{r}(t)+x_{i}(t) \quad \text { Cartesian form } \\
& \text { or } \\
& x(t)=|x(t)| e^{j \angle x(t)} \quad \text { Polar form } \\
& |x(t)|=\left[x_{r}^{2}(t)+x_{i}^{2}(t)\right]^{1 / 2} \quad \text { and } \quad \angle x(t)=\tan ^{-1}\left[\frac{x_{i}(t)}{x_{r}(t)}\right] \\
& x_{r}(t)=|x(t)| \cos [\angle x(t)] \quad \text { and } \quad x_{i}(t)=|x(t)| \sin [\angle x(t)]
\end{aligned}
$$

### 1.3.4 Signal Classification

## Periodic vs. non-periodic signals

A signal is said to be periodic if it satisfies

$$
x\left(t+T_{0}\right)=x(t)
$$

For all time instants $t$, and for a specific value of $T_{0} \neq 0$.
The $\boldsymbol{T}_{\boldsymbol{o}}$ is referred as the period of the signal


If a signal is periodic with period $T_{0}$, then it is also periodic with periods of $2 T_{0}, 3 T_{0}, \ldots ., k T_{0}, \ldots$. , where $k$ is any integer

### 1.3.4 Signal Classification

Example 1.4: Working with a complex periodic signal


### 1.3.4 Signal Classification

Example 1.6. Discuss the periodicity of the signals

$$
x(t)=\sin (2 \pi 1.5 t)+\sin (2 \pi 2.5 t)
$$

For this signal, the fundamental frequency is $f_{0}=0.5 \mathrm{~Hz}$. The two signal frequencies can be expressed as

$$
f_{1}=1.5 \mathrm{~Hz}=3 f_{0} \quad \text { and } f_{2}=2.5 \mathrm{~Hz}=5 f_{0}
$$

The resulting fundamental period is $T_{0}=1 / f_{0}=2$ seconds. Within one period of $x(t)$ there are $m_{1}=3$ full cycles of the first sinusoid and $m_{2}=5$ cycles of the second sinusoid. This is illustrated in following figure


### 1.3.4 Signal Classification

Example 1.6. Discuss the periodicity of the signals

$$
y(t)=\sin (2 \pi 1.5 t)+\sin (2 \pi 2.75 t)
$$

For this signal, the fundamental frequency is $f_{0}=0.25 \mathrm{~Hz}$. The two signal frequencies can be expressed as

$$
f_{1}=1.5 \mathrm{~Hz}=6 f_{0} \quad \text { and } f_{2}=2.75 \mathrm{~Hz}=11 f_{0}
$$

The resulting fundamental period is $T_{0}=1 / f_{0}=4$ seconds. Within one period of $x(t)$ there are $m_{1}=6$ full cycles of the first sinusoid and $m_{2}=11$ cycles of the second sinusoid. This is illustrated in following figure


### 1.3.5 Energy and Power Definitions

## Energy of a signal

With physical signals and systems, the concept of energy is associated with a signal that is applied to a load.


If we wanted to use the voltage $\boldsymbol{v}(\boldsymbol{t})$ as our basis in energy calculations:

$$
E=\int_{-\infty}^{\infty} v(t) i(t) d t=\int_{-\infty}^{\infty} \frac{v^{2}(t)}{R} d t
$$

Alternatively, we wanted to use the current $i(t)$ as our basis in energy calculations:

$$
E=\int_{-\infty}^{\infty} v(t) i(t) d t=\int_{-\infty}^{\infty} R i^{2}(t) d t
$$

### 1.3.5 Energy and Power Definitions Normalized energy of a signal

The normalized energy of a real-valued signal $x(t)$ :

$$
E=\int_{-\infty}^{\infty} x^{2}(t) d t
$$

If the integral can be computed

The normalized energy of a complex signal $x(t)$ :

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

If the integral can be computed

### 1.3.5 Energy and Power Definitions

## Time averaging operator

We use the operator < > to indicate time average.
$\diamond$ If the signal $x(t)$ is periodic with period $T_{0}$, its time average can be computed as.

$$
\langle x(t)\rangle=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) d t
$$

$\triangleleft$ If the signal $x(t)$ is non-periodic, its time average can be computed as.

$$
\langle x(t)\rangle=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) d t\right]
$$

### 1.3.5 Energy and Power Definitions

Time averaging operator
$\diamond$ The normalized average power for a periodic signal with period $T_{0}$

$$
P_{x}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x^{2}(t) d t
$$

$\diamond$ The normalized average power for a non-periodic signal

$$
P_{x}=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-T / 2}^{T / 2} x^{2}(t) d t\right]
$$

### 1.3.5 Energy and Power Definitions

## Example 1.8. Time average of a pulse train

Compute the time average of a periodic pulse train with an amplitude of $A$ and a period of $T_{0}=1 \mathrm{~s}$, defined by the equations

$$
x(t)=\left\{\begin{array}{cc}
A, & 0<t<d \\
0, & d<t<1
\end{array}\right.
$$

and $x\left(t+k T_{0}\right)=x(t+k)=x(t)$ for all $t$, and all integers $k$, the signal $x(t)$ is shown as below


### 1.3.5 Energy and Power Definitions

## Example 1.8. Time average of a pulse train

## Solution:

The time average of $x(t)$ can be calculated as

$$
\langle x(t)\rangle=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) d t
$$

where $T_{0}=1$

$$
\langle x(t)\rangle=\int_{0}^{1} x(t) d t=\int_{0}^{d}(A) d t+\int_{d}^{1}(0) d t=A d
$$

### 1.3.5 Energy and Power Definitions

Power of a signal
The instantaneous power dissipated in the load resistor would be.

$$
p_{\text {inst }}(t)=v(t) i(t)
$$

If the load is chose to have a value of $R=1 \Omega$, the normalized instantaneous power can be

$$
p_{\text {norm }}(t)=x^{2}(t)
$$

Normalized instantaneous power (real signal)

$$
p_{\text {norm }}(t)=x^{2}(t)
$$

Normalized average power (real signal)

$$
P_{x}=\left\langle z^{2}(t)\right\rangle
$$

Normalized instantaneous power (complex signal)

$$
p_{\text {norm }}(t)=|z(t)|^{2}
$$

Normalized average power (complex signal)

$$
\left.P_{z}=\left.\langle | z(t)\right|^{2}\right\rangle
$$

### 1.3.5 Energy and Power Definitions

## Energy Signals vs. Power signals

$\diamond$ Energy signals are those that have finite energy and zero power

$$
E_{x}<\infty \quad \text { and } \quad P_{x}=0
$$

$\diamond$ Power signals are those that have finite power and infinite energy

$$
E_{x} \rightarrow \infty \text { and } P_{x}<\infty
$$

### 1.3.5 Energy and Power Definitions

## RMS value of a signal

The root-mean-square (RMS) value of a signal $x(t)$ is defined as

$$
X_{R M S}=\left[\left\langle x^{2}(t)\right\rangle\right]^{1 / 2}
$$

### 1.3.5 Energy and Power Definitions

## Example 1.11. RMS value of a sinusoidal signal

Determine the RMS value of the signal

$$
x(t)=A \sin \left(2 \pi f_{0} t+\theta\right)
$$

## Solution:

Recall example 1.9, the normalized average power of $x(t)$ is

$$
P_{x}=\frac{A^{2}}{2}
$$

The RMS value of this signal is

$$
X_{R M S}=\sqrt{P_{x}}=\frac{A}{\sqrt{2}}
$$

### 1.3.6 Symmetry Properties

$\diamond$ Some signals have certain symmetry properties that could be utilized in a variety of ways in the analysis.
$\diamond$ More importantly, a signal that may not have any symmetry properties can still be written as a linear combination of signals with certain symmetry properties

### 1.3.6 Symmetry Properties

## even and odd symmetry

$\diamond$ A real-value signal is said to have even symmetry if it has the property

$$
x(-t)=x(t)
$$


$\diamond$ A real-value signal is said to have odd symmetry if it has the property

$$
x(-t)=-x(t)
$$



### 1.3.6 Symmetry Properties

Decomposition into even and odd components

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

« Even component

$$
x_{e}(t)=\frac{x(t)+x(-t)}{2} \quad x_{e}(-t)=x_{e}(t)
$$

$\diamond$ odd component

$$
x_{o}(t)=\frac{x(t)-x(-t)}{2} \quad x_{o}(-t)=-x_{o}(t)
$$

### 1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a rectangular pulse
Determine the odd and even components of the rectangular pulse signal
$x(t)=\prod\left(t-\frac{1}{2}\right)=\left\{\begin{array}{rr}1, & 0<t<1 \\ 0, & \text { otherwise }\end{array}\right.$


Solution:
$x_{e}(t)=\frac{\prod\left(t-\frac{1}{2}\right)+\prod\left(-t-\frac{1}{2}\right)}{2}=\frac{1}{2} \Pi\left(\frac{t}{2}\right)$


$$
x_{o}(t)=\frac{\prod\left(t-\frac{1}{2}\right)-\prod\left(-t-\frac{1}{2}\right)}{2}
$$



### 1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a sinusoidal signal
Determine the odd and even components of the rectangular pulse signal
$x(t)=5 \cos (10 t+\pi / 3)$

Solution:


$$
x_{e}(t)=2.5 \cos (10 t)
$$



### 1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a sinusoidal signal
Determine the odd and even components of the rectangular pulse signal

$$
x(t)=5 \cos (10 t+\pi / 3)
$$

Solution:


$$
x_{o}(t)=-4.3301 \sin (10 t)
$$



### 1.3.6 Symmetry Properties

Symmetry properties for complex signals
$\diamond$ A complex-value signal is said to have conjugate symmetry if it satisfies

$$
x(-t)=x^{*}(t) \quad \text { for all } t
$$

$\diamond$ A complex-value signal is said to have conjugate antisymmetry if it satisfies

$$
\begin{aligned}
& x(-t)=-x^{*}(t) \quad \text { for all } t . \\
& x(t)=x_{E}(t)+x_{o}(t)
\end{aligned}
$$

Conjugate symmetric component

$$
x_{E}(t)=\frac{x(t)+x^{*}(-t)}{2}
$$

Conjugate antisymmetric component

$$
x_{o}(t)=\frac{x(t)-x^{*}(-t)}{2}
$$

### 1.3.6 Symmetry Properties

Example 1.15. Symmetry of a complex exponential signal
Consider the complex exponential signal

$$
x(t)=A e^{j \omega t} \quad \text { A: real }
$$

What symmetry property does this signal have, if any?

## Solution:

Time reverse the signal: $\quad x(-t)=A e^{-j \omega t}$
Conjugate the signal: $x^{*}(t)=\left(A e^{j o t}\right)^{*}=A e^{-j o t}$
Since $x(-t)=x^{*}(t)$, the signal is conjugate symmetric

### 1.3.7 Graphical representation of sinusoidal signals using phasor

$$
x(t)=A \cos \left(2 \pi f_{0} t+\theta\right)
$$

Let the phasor $X$ be defined as

$$
X \triangleq A e^{j \theta}
$$

so that

$$
\left.\begin{array}{rl}
x(t) & =\operatorname{Re}\left\{\begin{array}{l}
A e^{j\left(2 \pi f_{0} t+\theta\right)} \\
\\
\end{array}=\operatorname{Re}\left\{X e^{j 2 \pi f_{0} t}\right.\right.
\end{array}\right\}
$$



