1.3 Continuous-Time Signals

Consider x(t), a mathematical function of time chosen to approximate the
strength of the physical quantity at the time instant t. in this relationship, t is
the independent variable, and x is the dependent variable. The signal x(t) is
referred to as a continuous-time signal or an analog signal.
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1.3 Continuous-Time Signals

Some signals can be described analytically. For example

x(t) = 5sin(12t)
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1.3 Continuous-Time Signals

Matlab code of x(t) = 5sin(12t):

clear

close all

% Script : matex_1 1a

%

% Construct a vector of time instants.

t = linspace(0,5,1000);

% Compute the signal at time instants in vector "t".
x1 = 5*sin(12*t);

hh = plot(t,x1);
set(hh,'LineWidth',3,'Color','r');

hh = xlabel('Time (sec)');
set(hh,'FontSize',26,'FontWeight','bold');
hh = ylabel('x_1(t)');
set(hh,'FontSize',26,'FontWeight','bold');
set(gca,'FontSize',26,'FontWeight','bold');
grid



1.3.1 Signal Operations

Arithmetic Operations

Addition of a constant offset A to the signal x(t)
g(t) = x(t) +A
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1.3.1 Signal Operations

Arithmetic Operations
Multiplication of a constant gain B to the signal x(t)

g(t) = Bx(t)
z(t)
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1.3.1 Signal Operations

Arithmetic Operations

Summation of two signals x,(t) and x,(t)
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1.3.1 Signal Operations

Arithmetic Operations
Multiplication of two signals x,(t) and x,(t)
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1.3.1 Signal Operations
Time shifting

A time shifted version of the signal x(t) can be obtained through

(a)

g(t) = x(t-t,) )

{c)



1.3.1 Signal Operations

Time scaling

A time scaling version of the signal x(t) can be obtained through
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1.3.1 Signal Operations

Time reversal

A time shifted version of the signal x(t) can be obtained through

g(t) = x(-t)

(b)




1.3.2 Basic Building Blocks for Continuous-time Signals

Basic building blocks

<> Unit-impulse function
<> Unit-step function

<> Unit-pulse function
<> Unit-ramp function

<> Unit-triangle function

<> Sinusoidal signals



1.3.2 Basic Building Blocks for Continuous-time Signals
unit-impulse function

An arrow is used to indicate the location of that undefined amplitude.
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1.3.2 Basic Building Blocks for Continuous-time Signals

unit-impulse function

0 if t=0
5(1) = - (1.16)
undefined if t=0
and [oydi=1 (1.17)

Note: Eqn. 1.16 by itself represents an incomplete definition of the
function O(¢) since the amplitude of it is defined only when¢ =0,
and is undefined at the time instant t = 0. The Eqn. 1.17 fills this void.



1.3.2 Basic Building Blocks for Continuous-time Signals

unit-impulse function

Scaling and time shifting

O if t=t

1

ao(t—t,) =+
undefined if t=t
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1.3.2 Basic Building Blocks for Continuous-time Signals
unit-impulse function

An arrow is used to indicate the location of that undefined amplitude.

o(1)
A1

ao(t-t,)
,Ta




1.3.2 Basic Building Blocks for Continuous-time Signals

unit-impulse function

Obtaining unit-impulse function from a rectangular pulse
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Let g(t)
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1.3.2 Basic Building Blocks for Continuous-time Signals

The impulse function has two fundamental properties that are useful

<> Sampling property of the impulse function

f(t)é(t_ tl) = f(t1)5(t_t1)

<> Sifting property of the impulse function

[ F@d -t = f1)



1.3.2 Basic Building Blocks for Continuous-time Signals

Sampling property of the unit-impulse function

f(t)(s(t_t1) = f(t1)(5(t_t1)

The function f{t) must be continuous at t = t,



1.3.2 Basic Building Blocks for Continuous-time Signals

Sifting property of the unit-impulse function

[ f@d(t-1)dr = f(1,)

11 +At

| @@ -1)de= £ (1)
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The function f(t) must be continuous at t = t, Also, At >0



1.3.2 Basic Building Blocks for Continuous-time Signals

unit-step function

1 if >0 u(t)
u(t) = (1.30) 1
0 if t<0
t
Time shift of the unit-step function
1 if t>t, u(t)
u(t—1) =1 (1.31) 1
0 if t<¢




1.3.2 Basic Building Blocks for Continuous-time Signals

Using the unit-step function to turn a signal on at a specified time instant

-

sin2rw f,t) if t>t

1

x(t) =sin2a f,1)u(t—t,) =4
0 if t<t

1

l', Mh ‘, (,’ l..‘

N | '!\11'0000
y® N ‘i‘ ""

o~ 2 hpbpbpleteteasinds :

ot _‘-_(,l : |‘| T |
BN /Y Y.

0000!!\\!"""

I\ ’ | l||l||
‘0 ‘ *01'1' T‘obboobooooo.'o.' T |
| 1}
AVRAAIRIA ‘ 1RIRIRIRY '
‘AR EREREEREREERERERERER




1.3.2 Basic Building Blocks for Continuous-time Signals

Using the unit-step function to turn a signal off at a specified time instant

x(t) = sin(2a f, ) u(—t +1,) =
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1.3.2 Basic Building Blocks for Continuous-time Signals

The relationship between unit-step and unit-impulse functions

u(t) = jé()t)d)t —— o(t) = %




1.3.2 Basic Building Blocks for Continuous-time Signals

unit-pulse function

[1(t) =+

I, ltl<1/2 “l‘ ‘

0, ltl>1/2




1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-step functions

[1(6) = u(t + %) —u(i - %)




1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-impulse functions

t+1/2 t-1/2 t+1/2

T1(7) = u(z + ) u(t——) f S(A)A - f S(Mdr= [ 8(A)dA

t-1/2

1, t—l<0,and,t+%>0

[l "

0, otherwise

1 1

I, ——<t<—

= 2 2

0, otherwise




1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-pulse function from unit-impulse functions

t+1/2

[T = [ 8a)dA

t-1/2




1.3.2 Basic Building Blocks for Continuous-time Signals

unit-ramp function

t, t=0
r(t) =+ or, equivalently r(t) = tu(t)
0, <0
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1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-ramp function from a unit-step

r(t)= ju()t)d)t




1.3.2 Basic Building Blocks for Continuous-time Signals

unit-triangle function

Alt)
t+1, -1=<t<0

A)={ -r+1, O=<t<l /\
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0, otherwise




1.3.2 Basic Building Blocks for Continuous-time Signals

Constructing a unit-triangle using unit-ramp functions

A@) =r(t+1)=2r(t)+r(t +1)

r:ry r(t41)—2r(t) r{t+1)=2r(t) +r(t-1)

A A A
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1.3.2 Basic Building Blocks for Continuous-time Signals

Sinusoidal function
x(t)=Acos(w,t +0)

Where A is the amplitude of the signal, and ®,is the radian frequency which
has the unit of radians per second, abbreviated as rad/s. The parameter @ is
the initial phase angle in radians. The radian frequency can be expressed as
w, =27 f, where f, is the frequency in Hz.

15
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The A controls the peak value of the signal, and the 6 affects the peaks locations



1.3.3 Impulse decomposition for continuous-time signals

rough approximation to the signal x(t)

i)=Y xom[ [

n=-—0oo
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Take the limitas A—0 x(f)= lAiLI})[x(t)]
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1.3.4 Signal Classification

Real vs. complex signals

» Areal signal is one in which the amplitude is real-value at all time instants.

x(t)=u where u is the voltage

» A complex signal is one in which the amplitude may also have an imaginary part.

X(t) = x,(t) + x,(t) Cartesian form
r L x(t
O X(t) - ‘x(t)‘e]L " Polar form
|x(t)| = [xrz(f)+xi2(f)]l/2 and /x(t)=tan™ %‘

x, () =[x(@®]cos[Lx(1)]  and  x,(1) = |x(1)|sin[ Lx()]



1.3.4 Signal Classification
Periodic vs. non-periodic signals
A signal is said to be periodic if it satisfies

X(t+T,) = x(t)
For all time instants t, and for a specific value of T, =0.
The T, is referred as the period of the signal

rit)

If a signal is periodic with period T,, then it is also periodic with
periods of 2T,, 3T, ...., kT,, ...., where k is any integer



1.3.4 Signal Classification

Example 1.4: Working with a complex periodic signal
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1.3.4 Signal Classification

Example 1.6. Discuss the periodicity of the signals
x(t)=smn(2mx1.5t) +sin(2x2.5¢)

For this signal, the fundamental frequency is f, = 0.5Hz. The two signal
frequencies can be expressed as

f;=1.5Hz=3f, and f,=2.5Hz = 5f,

The resulting fundamental period is T, = 1/f, = 2 seconds. Within one period
of x(t) there are m, = 3 full cycles of the first sinusoid and m, = 5 cycles of the
second sinusoid. This is illustrated in following figure




1.3.4 Signal Classification

Example 1.6. Discuss the periodicity of the signals
y(t)=sin(21.5¢) +sin(27x2.75¢t)

For this signal, the fundamental frequency is f, = 0.25Hz. The two signal
frequencies can be expressed as

f,=1.5Hz=6f, and f,=2.75Hz = 11f,

The resulting fundamental period is T, = 1/f, = 4 seconds. Within one period
of x(t) there are m, = 6 full cycles of the first sinusoid and m, = 11 cycles of the
second sinusoid. This is illustrated in following figure




1.3.5 Energy and Power Definitions

Energy of a signal

With physical signals and systems, the concept of energy is associated with
a signal that is applied to a load.

+

i(t)

v(t) R ift) R V1)

If we wanted to use the voltage v(t) as our basis in energy calculations:

E=[Tvitydi= [ V(o)

— —00

dt

Alternatively, we wanted to use the current i(t) as our basis in energy calculations:

E=fiv(t)i(t)dt=f:Ri2(t)dt



1.3.5 Energy and Power Definitions

Normalized energy of a signal

The normalized energy of a real-valued signal x(t):
E={ T X (t)dt

If the integral can be computed

The normalized energy of a complex signal x(t):

E=f_°;|x(r) ? dt

If the integral can be computed



1.3.5 Energy and Power Definitions

Time averaging operator

We use the operator < > to indicate time average.

< If the signal x(t) is periodic with period T,, its time average can be
computed as.

()= [ e

0

< If the signal x(t) is non-periodic, its time average can be computed as.

(x(1)) = 1im[l [ x(t)dt}

T o T -T/2



1.3.5 Energy and Power Definitions

Time averaging operator

< The normalized average power for a periodic signal with period T,

1 pT./2
P, =—f T 2
TO _To/2

(¢)dt

<> The normalized average power for a non-periodic signal

P, - liml% e xz(t)dt]

| T -T2



1.3.5 Energy and Power Definitions

Example 1.8. Time average of a pulse train

Compute the time average of a periodic pulse train with an amplitude of A
and a period of T, = 1 s, defined by the equations

r

A, O<t<d
x(1) =+
0, d<t<l

and x(t+kT,) = x(t+k) = x(t) for all t, and all integers k, the signal x(t) is shown
as below

rit)




1.3.5 Energy and Power Definitions

Example 1.8. Time average of a pulse train

Solution:
The time average of x(t) can be calculated as

(o) = [ o

where T, =1

(x(0)= [ x(dt = ["(Ayde+ [ (0)dr = Ad



1.3.5 Energy and Power Definitions

Power of a signal

The instantaneous power dissipated in the load resistor would be.

If the load is chose to have a value of R =1Q, the normalized instantaneous
power can be

Do () = X7 (1)

Normahzed instantaneous power (real Normalized instantaneous power

signal) {complex signal)

Pno:m(f) = 1'2 (t) pnorm(t) It (t)E:

Normalized average power (complex
sagnal)

Normalized average power (real sgnal)

Pa = (2%(t)) Pe = (|=(t)*)




1.3.5 Energy and Power Definitions

Energy Signals vs. Power signals
<> Energy signals are those that have finite energy and zero power

E <o and P =(

<> Power signals are those that have finite power and infinite energy

E — and P <



1.3.5 Energy and Power Definitions

RMS value of a signal

The root-mean-square (RMS) value of a signal x(t) is defined as

XRMS = [<X2 (t)>]1/2



1.3.5 Energy and Power Definitions

Example 1.11. RMS value of a sinusoidal signal

Determine the RMS value of the signal
x(t)=Asin(2x f t +0)
Solution:

Recall example 1.9, the normalized average power of x(t) is

2
p A
2
The RMS value of this signal is

A
XRMS=\/Fx=$



1.3.6 Symmetry Properties

<> Some signals have certain symmetry properties that could be
utilized in a variety of ways in the analysis.

<> More importantly, a signal that may not have any symmetry
properties can still be written as a linear combination of signals
with certain symmetry properties



1.3.6 Symmetry Properties

even and odd symmetry

<> Areal-value signal is said to have even symmetry if it has
the property £(6)

x(—=t)=x(1) / \

— ~—

<> Areal-value signal is said to have odd symmetry if it has
the property r(t)

x(=1) = =x(7) T(\




1.3.6 Symmetry Properties

Decomposition into even and odd components

x(t)=x,(t)+x (1)

<> Even component

x(1) +2x(—t) X ()= x (1)

x,(1) =

<> odd component

x(t)—x(-t)

x,(=1)=-x,(1)
2

x,(t) =



1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a rectanqular pulse

Determine the odd and even components of the rectangular pulse signal
x(t)

I, O<r<l1 '

1
X(l)=1—[(f—5)=<

0, otherwise ; :

Solution: .(t)

n<r—%>+n<—r—%>
2

x,(1) =

1 t t
= EH(E) 1 !

1 1
H(t—a)—n(—f—i) 0.5

X ()= 5
0() 2 f : t




1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a sinusoidal signal

Determine the odd and even components of the rectangular pulse signal

x(t)=5cos(10t+ 7/ 3)

Solution:

x,(t)=2.5c0s(10¢)

0.5 0 UL | 1.5



1.3.6 Symmetry Properties

Example 1.13. Even and odd component of a sinusoidal signal

Determine the odd and even components of the rectangular pulse signal

x(t)=5cos(10t+ 7 /3) =

Solution:

x (t) = -4.3301sin(10¢)

0.5 0 0.5 | 1.5

{ |sec)



1.3.6 Symmetry Properties

Symmetry properties for complex signals

<> A complex-value signal is said to have conjugate symmetry
if it satisfies

x(-t)=x (1) for all t.
<> A complex-value signal is said to have conjugate antisymmetry
if it satisfies )
x(=t)=-x (1) for all t.
x(t)=x,(t)+x,(1)

Conjugate symmetric component Conjugate antisymmetric component

x(1)+x"(~1) r (1= X=X (1)
2 ’ 2

x, ()=



1.3.6 Symmetry Properties

Example 1.15. Symmetry of a complex exponential signal

Consider the complex exponential signal
x(t)=Ae™  A:real
What symmetry property does this signal have, if any?

Solution:

Time reverse the signal: x(-1)= Ae™™

Conjugate the signal: x () =(Ae’™") = Ae™™

Since x(—t) = x (2), the signal is conjugate symmetric



1.3.7 Graphical representation of sinusoidal signals
using phasor

x(t)=Acosmf,t+0)

Let the phasor X be defined as e

X £ Ae” / ,
so that |
x(t)=Re Aef(2ﬂf0t+9)} | I
— Rei Xe’ 2”f0t} = \




