
1.3	Con(nuous-Time	Signals	

Consider	x(t),	a	mathema/cal	func/on	of	/me	chosen	to	approximate	the		
strength	of	the	physical	quan/ty	at	the	/me	instant	t.	in	this	rela/onship,	t	is		
the	independent	variable,	and	x	is	the	dependent	variable.	The	signal	x(t)	is		
referred	to	as	a	con-nuous--me	signal	or	an	analog	signal.		



1.3	Con(nuous-Time	Signals	

Some	signals	can	be	described	analy-cally.	For	example	
	
																																	x(t)	=	5sin(12t)	



1.3	Con(nuous-Time	Signals	

Matlab	code	of	x(t)	=	5sin(12t):	

clear	
close	all	
%	Script	:	matex_1_1a	
%	
%	Construct	a	vector	of	/me	instants.	
t	=	linspace(0,5,1000);	
%	Compute	the	signal	at	/me	instants	in	vector	"t".	
x1	=	5*sin(12*t);	
	
hh	=	plot(t,x1);	
set(hh,'LineWidth',3,'Color','r');	
hh	=	xlabel('Time	(sec)');	
set(hh,'FontSize',26,'FontWeight','bold');	
hh	=	ylabel('x_1(t)');	
set(hh,'FontSize',26,'FontWeight','bold');	
set(gca,'FontSize',26,'FontWeight','bold');	
grid	



1.3.1	Signal	Opera(ons	
Arithme(c	Opera(ons	

g(t)	=	x(t)	+	A	

Addi-on	of	a	constant	offset	A	to	the	signal	x(t)	



g(t)	=	Bx(t)		

Mul-plica-on	of	a	constant	gain	B	to	the	signal	x(t)	

1.3.1	Signal	Opera(ons	
Arithme(c	Opera(ons	



g(t)	=	x1(t)	+	x2(t)			

Summa(on	of	two	signals	x1(t)	and	x2(t)		

1.3.1	Signal	Opera(ons	
Arithme(c	Opera(ons	



g(t)	=	x1(t)	*	x2(t)			

Mul(plica(on	of	two	signals	x1(t)	and	x2(t)		

1.3.1	Signal	Opera(ons	

Arithme(c	Opera(ons	



g(t)	=	x(t-td)				

A	-me	shiCed	version	of	the	signal	x(t)	can	be	obtained	through		

1.3.1	Signal	Opera(ons	
Time	shiAing	



g(t)	=	x(at)				

A	-me	scaling	version	of	the	signal	x(t)	can	be	obtained	through		

1.3.1	Signal	Opera(ons	
Time	scaling	



g(t)	=	x(-t)				

A	-me	shiCed	version	of	the	signal	x(t)	can	be	obtained	through		

1.3.1	Signal	Opera(ons	

Time	reversal	



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Basic	building	blocks	

² Unit-impulse	func(on	

² Unit-step	func(on	

² Unit-pulse	func(on	

² Unit-ramp	func(on	

² Unit-triangle	func(on	

² Sinusoidal	signals	



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-impulse	func(on	

An	arrow	is	used	to	indicate	the	loca(on	of	that	undefined	amplitude.	

0	

1	

t	

δ(t)



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-impulse	func(on	

δ(t) =
0 if t ≠ 0

undefined if t = 0

"

#
$

%
$

(1.16)	

δ(t)dt =1
−∞

∞

∫ (1.17)	and	

Note:	Eqn.	1.16	by	itself	represents	an	incomplete	defini/on	of	the	
	func/on										since	the	amplitude	of	it	is	defined	only	when										,		
and	is	undefined	at	the	/me	instant	t	=	0.	The	Eqn.	1.17	fills	this	void.		

δ(t) t ≠ 0



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-impulse	func(on	

aδ(t − t1)dt = a
−∞

∞

∫and	

aδ(t − t1) =
0 if t ≠ t1

undefined if t = t1

#

$
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&
%

Scaling	and	(me	shiAing	



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-impulse	func(on	

An	arrow	is	used	to	indicate	the	loca(on	of	that	undefined	amplitude.	

0	

1	

t	

δ(t)

0	

a	

t	

aδ(t − t1)



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-impulse	func(on	
Obtaining	unit-impulse	func/on	from	a	rectangular	pulse		



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

The	impulse	func/on	has	two	fundamental	proper/es	that	are	useful	

² Sampling	property	of	the	impulse	func/on		

f (t)δ(t − t1) = f (t1)δ(t − t1)

² SiCing	property	of	the	impulse	func/on		

f (t)
−∞

∞

∫ δ(t − t1)dt = f (t1)



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Sampling	property	of	the	unit-impulse	func/on		

f (t)δ(t − t1) = f (t1)δ(t − t1)

The	func/on	f(t)	must	be	con/nuous	at	t	=	t1		



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

SiCing	property	of	the	unit-impulse	func/on		

The	func/on	f(t)	must	be	con(nuous	at	t	=	t1	.	Also,			

f (t)
−∞

∞

∫ δ(t − t1)dt = f (t1)

f (t)
t1−Δt

t1+Δt

∫ δ(t − t1)dt = f (t1)

Δt > 0



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-step	func(on	

u(t) =
1 if t > 0

0 if t < 0

!

"
#

$
#

(1.30)	

t	

u(t)	

1	

u(t − t1) =
1 if t > t1

0 if t < t1

"

#
$

%
$

(1.31)	

t	

u(t)	

1	

	Time	shiC	of	the	unit-step	func/on	

t1	



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Using	the	unit-step	func(on	to	turn	a	signal	on	at	a	specified	(me	instant	

x(t) = sin(2π f0t)u(t − t1) =
sin(2π f0t) if t > t1

0 if t < t1

"
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1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Using	the	unit-step	func(on	to	turn	a	signal	off	at	a	specified	(me	instant	

x(t) = sin(2π f0t)u(−t + t1) =
sin(2π f0t) if t < t1

0 if t > t1

"

#
$

%
$



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

The	rela(onship	between	unit-step	and	unit-impulse	func/ons		

u(t) = δ(λ)
−∞

∞

∫ dλ δ(t) = du
dt



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-pulse	func(on	

∏(t) =
1, | t |<1/ 2

0, | t |>1/ 2

"
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1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Construc(ng	a	unit-pulse	func(on	from	unit-step	func(ons	

∏(t) = u(t + 1
2
)−u(t − 1

2
)



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Construc(ng	a	unit-pulse	func(on	from	unit-impulse	func(ons	

∏(t) = u(t + 1
2
)−u(t − 1

2
) = δ(λ)

−∞

t+1/2

∫ dλ − δ(λ)
−∞

t−1/2

∫ dλ = δ(λ)
t−1/2

t+1/2

∫ dλ

δ(λ)
t−1/2

t+1/2

∫ dλ =
1, t − 1

2
< 0,and, t + 1

2
> 0

0, otherwise
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$
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=
1, −

1
2
< t < 1

2

0, otherwise

"
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%
$
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1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Construc(ng	a	unit-pulse	func(on	from	unit-impulse	func(ons	

∏(t) = δ(λ)
t−1/2

t+1/2

∫ dλ



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-ramp	func(on	

r(t) =
t, t ≥ 0

0, t < 0

"

#
$

%
$

r(t) = tu(t)or,	equivalently	



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Construc(ng	a	unit-ramp	func(on	from	a	unit-step	

r(t) = u(λ)dλ
−∞

∞

∫



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

unit-triangle	func(on	

Λ(t) =

t +1, −1≤ t < 0

−t +1, 0 ≤ t <1

0, otherwise
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1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Construc(ng	a	unit-triangle	using	unit-ramp	func(ons	

Λ(t) = r(t +1)− 2r(t)+ r(t +1)



1.3.2	Basic	Building	Blocks	for	Con(nuous-(me	Signals	

Sinusoidal	func(on	
x(t) = Acos(ω0t +θ )

Where	A	is	the	amplitude	of	the	signal,	and						is	the	radian	frequency	which		
has	the	unit	of	radians	per	second,	abbreviated	as	rad/s.	The	parameter						is		
the	ini-al	phase	angle	in	radians.	The	radian	frequency	can	be	expressed	as																									
																			where	f0	is	the	frequency	in	Hz.	

ω0

θ

ω0 = 2π f0

−θ
2π f0

2π −θ
2π f0

T0=1/f0	

The	A	controls	the	peak	value	of	the	signal,	and	the					affects	the	peaks	loca(ons	θ



1.3.3	Impulse	decomposi(on	for	con(nuous-(me	signals	

rough	approxima/on	to	the	signal	x(t)	

x̂(t) = x(nΔ)
n=−∞

∞

∑ (t − nΔ
Δ

)∏

Δ→ 0Take	the	limit	as	 x(t) = lim x̂(t)[ ]
Δ→ 0

= x(λ)
−∞

∞

∫ δ(t −λ)dλ



1.3.4	Signal	Classifica(on	
Real	vs.	complex	signals	

Ø  A	real	signal	is	one	in	which	the	amplitude	is	real-value	at	all	/me	instants.	
																																																									
																																																									x(t)	=	u													where	u	is	the	voltage	

Ø  A	complex	signal	is	one	in	which	the	amplitude	may	also	have	an	imaginary	part.		
																																																		
																																																				x(t)	=	xr(t)	+	xi(t)												Cartesian	form	
												

x(t) = x(t) e j∠x ( t )or	
Polar	form	

xr (t) = x(t) cos ∠x(t)[ ] xi (t) = x(t) sin ∠x(t)[ ]and	

x(t) = xr
2 (t)+ xi

2 (t)!" #$
1/2

and	 ∠x(t) = tan−1 xi (t)
xr (t)
#

$
%

&

'
(



1.3.4	Signal	Classifica(on	
Periodic	vs.	non-periodic	signals		

																		A		signal	is	said	to	be	periodic	if	it	sa/sfies	

																																				x(t+T0)	=	x(t)	
For	all	/me	instants	t,	and	for	a	specific	value	of												.		
The	T0	is	referred	as	the	period	of	the	signal			
	

T0 ≠ 0

If	a	signal	is	periodic	with	period	T0,	then	it	is	also	periodic	with		
periods	of	2T0,	3T0,	….,	kT0,	….,	where	k	is	any	integer		



1.3.4	Signal	Classifica(on	

Example	1.4:	Working	with	a	complex	periodic	signal	

real		

imaginary		

magnitude		

phase		



1.3.4	Signal	Classifica(on	

Example	1.6.	Discuss	the	periodicity	of	the	signals	
x(t) = sin(2π1.5t)+ sin(2π2.5t)

For	this	signal,	the	fundamental	frequency	is	f0	=	0.5Hz.	The	two	signal	
frequencies	can	be	expressed	as		

f1	=	1.5Hz	=	3f0				and		f2	=	2.5Hz	=	5f0				

The	resul/ng	fundamental	period	is	T0	=	1/f0	=	2	seconds.	Within	one	period	
of	x(t)	there	are	m1	=	3	full	cycles	of	the	first	sinusoid	and	m2	=	5	cycles	of	the		
second	sinusoid.	This	is	illustrated	in	following	figure		



1.3.4	Signal	Classifica(on	

Example	1.6.	Discuss	the	periodicity	of	the	signals	
y(t) = sin(2π1.5t)+ sin(2π2.75t)

For	this	signal,	the	fundamental	frequency	is	f0	=	0.25Hz.	The	two	signal	
frequencies	can	be	expressed	as		

f1	=	1.5Hz	=	6f0				and		f2	=	2.75Hz	=	11f0				

The	resul/ng	fundamental	period	is	T0	=	1/f0	=	4	seconds.	Within	one	period	
of	x(t)	there	are	m1	=	6	full	cycles	of	the	first	sinusoid	and	m2	=	11	cycles	of	the		
second	sinusoid.	This	is	illustrated	in	following	figure		



1.3.5	Energy	and	Power	Defini(ons		
Energy	of	a	signal		

With	physical	signals	and	systems,	the	concept	of	energy	is	associated	with		
a	signal	that	is	applied	to	a	load.		

+	
-	

i(t)	

v(t)	 R	
v(t)	i(t)	 R	

+	

-	

E = v(t)i(t)dt = v2 (t)
R

dt
−∞

∞

∫
−∞

∞

∫

If	we	wanted	to	use	the	voltage	v(t)	as	our	basis	in	energy	calcula/ons:	

E = v(t)i(t)dt = Ri2 (t)dt
−∞

∞

∫
−∞

∞

∫
Alterna/vely,		we	wanted	to	use	the	current	i(t)	as	our	basis	in	energy	calcula/ons:	



1.3.5	Energy	and	Power	Defini(ons		
Normalized	energy	of	a	signal		

E = x2 (t)dt
−∞

∞

∫

The	normalized	energy	of	a	real-valued	signal	x(t):	

E = | x(t) |2 dt
−∞

∞

∫

The	normalized	energy	of	a	complex	signal	x(t):	

If	the	integral	can	be	computed	

If	the	integral	can	be	computed	



1.3.5	Energy	and	Power	Defini(ons		
Time	averaging	operator		

We	use	the	operator	<		>	to	indicate	/me	average.		

x(t) = 1
T0

x(t)
−T0 /2

T0 /2∫ dt

²  If	the	signal	x(t)	is	periodic	with	period	T0,	its	(me	average	can	be	
computed	as.	

	

²  If	the	signal	x(t)	is	non-periodic,	its	(me	average	can	be	computed	as.	
	

x(t) = lim 1
T

x(t)
−T /2

T /2

∫ dt
#

$%
&

'(T→∞



1.3.5	Energy	and	Power	Defini(ons		
Time	averaging	operator		

Px =
1
T0

x2(t)
−T0 /2
T0 /2∫ dt

²  The	normalized	average	power	for	a	periodic	signal	with	period	T0	

Px = lim
1
T

x2(t)
−T /2
T /2
∫ dt

#

$%
&

'(T→∞

²  The	normalized	average	power	for	a	non-periodic	signal		



1.3.5	Energy	and	Power	Defini(ons		
Example	1.8.	Time	average	of	a	pulse	train	

Compute	the	/me	average	of	a	periodic	pulse	train	with	an	amplitude	of	A		
and	a	period	of	T0	=	1	s,	defined	by	the	equa/ons	

x(t) =
A, 0 < t < d

0, d < t <1

!

"
#

$
#

and	x(t+kT0)	=	x(t+k)	=	x(t)	for	all	t,	and	all	integers	k,	the	signal	x(t)	is	shown		
as	below	



1.3.5	Energy	and	Power	Defini(ons		
Example	1.8.	Time	average	of	a	pulse	train	

Solu(on:	

x(t) = 1
T0

x(t)
−T0 /2

T0 /2∫ dt

The	/me	average	of	x(t)	can	be	calculated	as		

where	T0	=	1	

x(t) = x(t)
0

1

∫ dt = (A)dt + (0)dt = Ad
d

1

∫0

d

∫



1.3.5	Energy	and	Power	Defini(ons		
Power	of	a	signal		

The	instantaneous	power	dissipated	in	the	load	resistor	would	be.	
	 pinst (t) = v(t)i(t)

If	the	load	is	chose	to	have	a	value	of															,	the	normalized	instantaneous	
power	can	be		

R =1Ω

pnorm (t) = x
2 (t)



1.3.5	Energy	and	Power	Defini(ons		

Energy	Signals	vs.	Power	signals		

² Energy	signals	are	those	that	have	finite	energy	and	zero	power		

Ex <∞ and	 Px = 0

² Power	signals	are	those	that	have	finite	power	and	infinite	energy		

Ex →∞ and	 Px <∞



1.3.5	Energy	and	Power	Defini(ons		

RMS	value	of	a	signal		

The	root-mean-square	(RMS)	value	of	a	signal	x(t)	is	defined	as	

XRMS = x2 (t)!" #$
1/2



1.3.5	Energy	and	Power	Defini(ons		
Example	1.11.	RMS	value	of	a	sinusoidal	signal	

Solu(on:	

Px =
A2

2
The	RMS	value	of	this	signal	is		

Determine	the	RMS	value	of	the	signal	

x(t) = Asin(2π f0t +θ )

Recall	example	1.9,	the	normalized	average	power	of	x(t)	is	

XRMS = Px =
A
2



1.3.6	Symmetry	Proper(es		

² Some	signals	have	certain	symmetry	proper(es	that	could	be		
					u/lized	in	a	variety	of	ways	in	the	analysis.		

² More	importantly,	a	signal	that	may	not	have	any	symmetry		
					proper(es	can	s-ll	be	wriRen	as	a	linear	combina(on	of	signals		
					with	certain	symmetry	proper(es		



1.3.6	Symmetry	Proper(es		
even	and	odd	symmetry		

²  	A	real-value	signal	is	said	to	have	even	symmetry	if	it	has		
						the	property		

x(−t) = x(t)

²  	A	real-value	signal	is	said	to	have	odd	symmetry	if	it	has		
						the	property		

x(−t) = −x(t)



1.3.6	Symmetry	Proper(es		

Decomposi(on	into	even	and	odd	components			

² Even	component	

xe(t) =
x(t)+ x(−t)

2

² odd	component		

x(t) = xe(t)+ xo(t)

xe(−t) = xe(t)

xo(t) =
x(t)− x(−t)

2
xo(−t) = −xo(t)



1.3.6	Symmetry	Proper(es		
Example	1.13.	Even	and	odd	component	of	a	rectangular	pulse	

Determine	the	odd	and	even	components	of	the	rectangular	pulse	signal	

x(t) =∏(t − 1
2
) =

1, 0 < t <1

0, otherwise

#

$
%

&
%

Solu(on:	

xe(t) =
∏(t − 1

2
)+∏(−t − 1

2
)

2
=
1
2
∏( t
2
)

xo(t) =
∏(t − 1

2
)−∏(−t − 1

2
)

2



1.3.6	Symmetry	Proper(es		
Example	1.13.	Even	and	odd	component	of	a	sinusoidal	signal	

Determine	the	odd	and	even	components	of	the	rectangular	pulse	signal	

x(t) = 5cos(10t +π / 3)

Solu(on:	

xe(t) = 2.5cos(10t)



1.3.6	Symmetry	Proper(es		
Example	1.13.	Even	and	odd	component	of	a	sinusoidal	signal	

Determine	the	odd	and	even	components	of	the	rectangular	pulse	signal	

x(t) = 5cos(10t +π / 3)

Solu(on:	

xo(t) = −4.3301sin(10t)



1.3.6	Symmetry	Proper(es		
Symmetry	proper(es	for	complex	signals		

²  	A	complex-value	signal	is	said	to	have	conjugate	symmetry		
						if	it	sa/sfies		

x(−t) = x*(t)

²  	A	complex-value	signal	is	said	to	have	conjugate	an(symmetry		
						if	it	sa/sfies		

for	all	t.	

x(−t) = −x*(t) for	all	t.	

x(t) = xE (t)+ xO (t)

Conjugate	symmetric	component		
							

xE (t) =
x(t)+ x*(−t)

2

Conjugate	an(symmetric	component		
							

xO (t) =
x(t)− x*(−t)

2



1.3.6	Symmetry	Proper(es		
Example	1.15.	Symmetry	of	a	complex	exponenNal	signal	

Consider	the	complex	exponen/al	signal	
x(t) = Ae jωt

Solu(on:	

A:	real	
What	symmetry	property	does	this	signal	have,	if	any?	

Time	reverse	the	signal:	 x(−t) = Ae− jωt

Conjugate	the	signal:	 x*(t) = (Ae jωt )* = Ae− jωt

x(−t) = x*(t)Since																									,	the	signal	is	conjugate	symmetric	



1.3.7	Graphical	representa(on	of	sinusoidal	signals	
using	phasor		

x(t) = Acos(2π f0t +θ )

Let	the	phasor	X	be	defined	as	

X = Ae jθΔ

so	that	

x(t) = Re Ae j (2π f0t+θ ){ }
= Re Xe j2π f0t{ }


