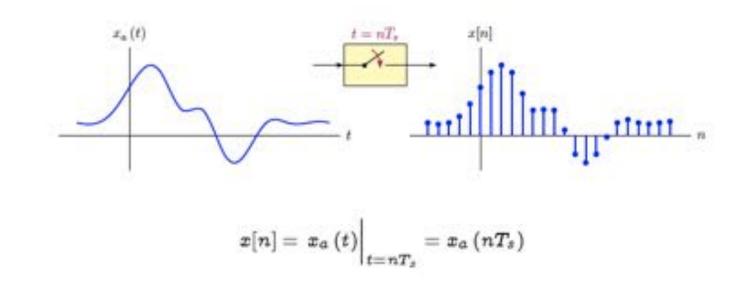
Chapter 6 Sampling and Reconstruction

It may be possible to represent a continuous-time signal without any loss of information by a discrete set of amplitude values measured at uniformly spaced time intervals.



n: Integer, T_s : Sampling interval/period $f_s = rac{1}{T_s}$: Sampling rate/frequency

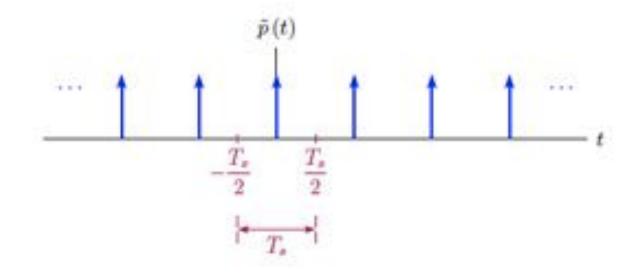
$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$
 A periodic impulse train with period T_s

$$x_{s}(t) = x_{a}(t)p(t)$$
$$= \sum_{n=-\infty}^{\infty} x_{a}(nT_{s})\delta(t-nT_{s})$$

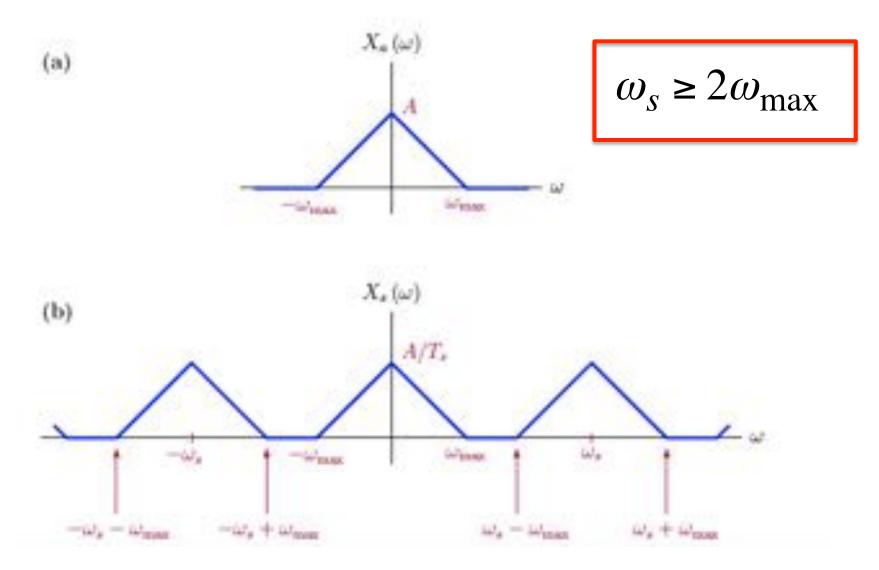
 $x_s(t)$: the *impulse-sampled signal (digital signal)* $x_a(t)$: the *original signal (analog signal)*

NOTE: the impulse-sampled signal $x_s(t)$ is still a continuous-time signal.

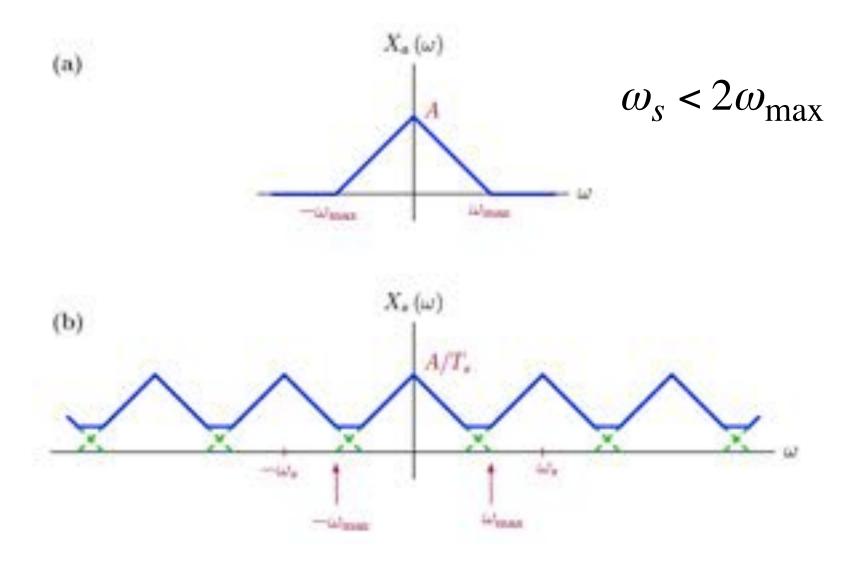
Question: How dense must the impulse train p(t) to be so that the impulse-sampled signal $x_s(t)$ is an accurate and complete representation of the original (analog) signal $x_a(t)$?



x_a(t) CAN be totally recovered from impulse-sampled signal x_s(t)



x_a(t) CAN'T be totally recovered from impulse-sampled signal x_s(t)

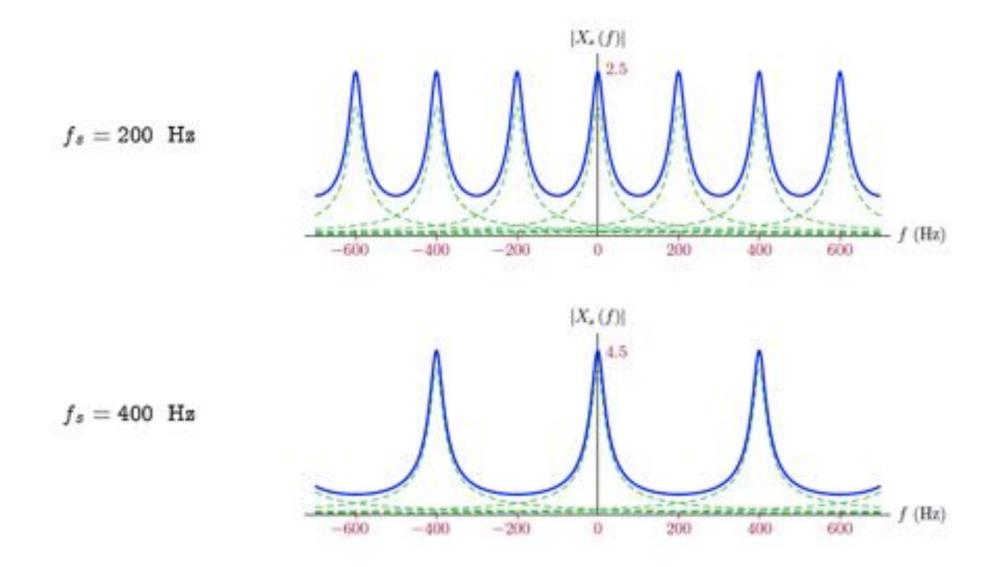


Impulse-sampling a right-sided exponential

Consider a right-sided exponential signal

$$x_{a}\left(t\right)=e^{-100t}\,u\left(t\right)$$

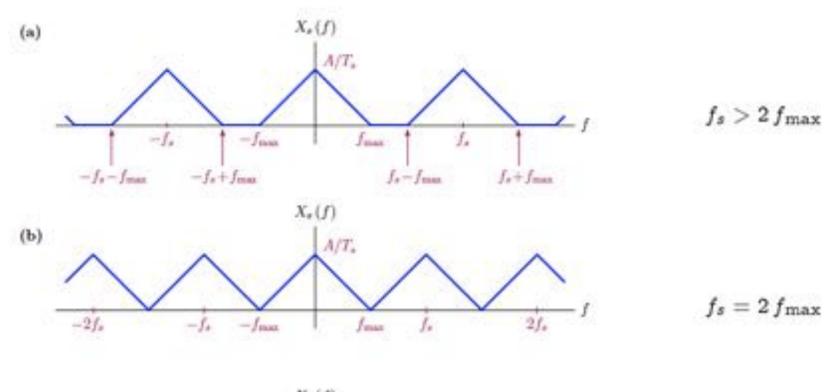
This signal is to be impulse sampled. Determine and graph the spectrum of the impulse sampled signal $x_s(t)$ for sampling rates $f_s = 200$ Hz, $f_s = 400$ Hz and $f_s = 600$ Hz.

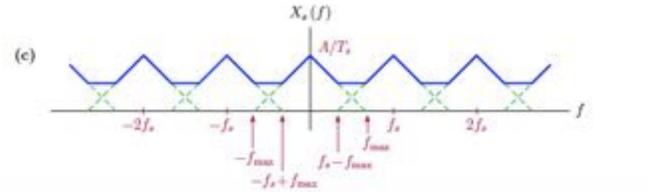


Nyquist Sampling Criterion

For the impulse-sampled signal to form an accurate representation of the original signal, the sampling rate must be at least twice the highest frequency in the spectrum of the original signal

$$f_s \ge 2f_{\max}$$

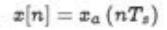


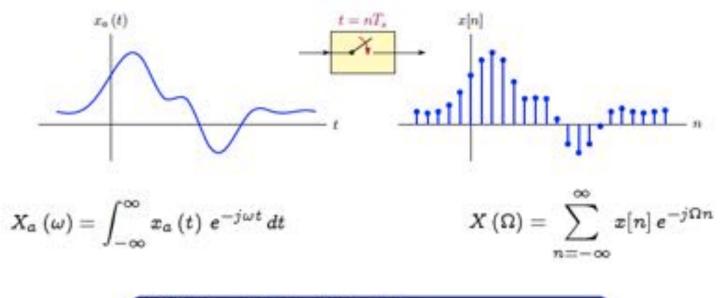


 $f_s < 2 f_{\max}$

6.2.3 DTFT of Sampled Signal

6.2.3 DTFT of Sampled Signal





$$X(\Omega)$$
 is related to $X_a(\omega)$ by
 $X(\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_a\left(\frac{\Omega - 2\pi k}{T_s}\right)$

$$X(\Omega)$$
 is related to $X_a(\omega)$ by
 $X(\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_a\left(\frac{\Omega - 2\pi k}{T_s}\right)$

An impulse train is used in the sampled continue-time signal. But impulse train is not practical available.

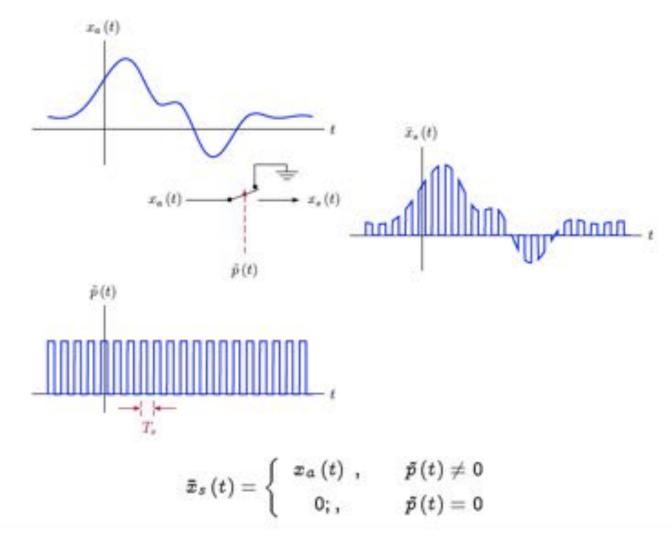
An alternative approach is using a periodic pulse train. But how would the use of pulses affect the method in recovering the original signal from its sampled version.

Natural Sampling

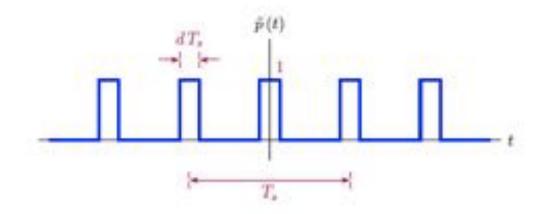


$$=x_a\left(t
ight)\sum_{n=-\infty}^{\infty}\Pi\left(rac{t-nT_s}{dT_s}
ight) \qquad d: ext{ Duty cycle}$$

Natural Sampling



Natural Sampling



$$ilde{p}\left(t
ight)=\sum_{n=-\infty}^{\infty}\Pi\left(rac{t-nT_{s}}{dT_{s}}
ight)$$

EFS representation:

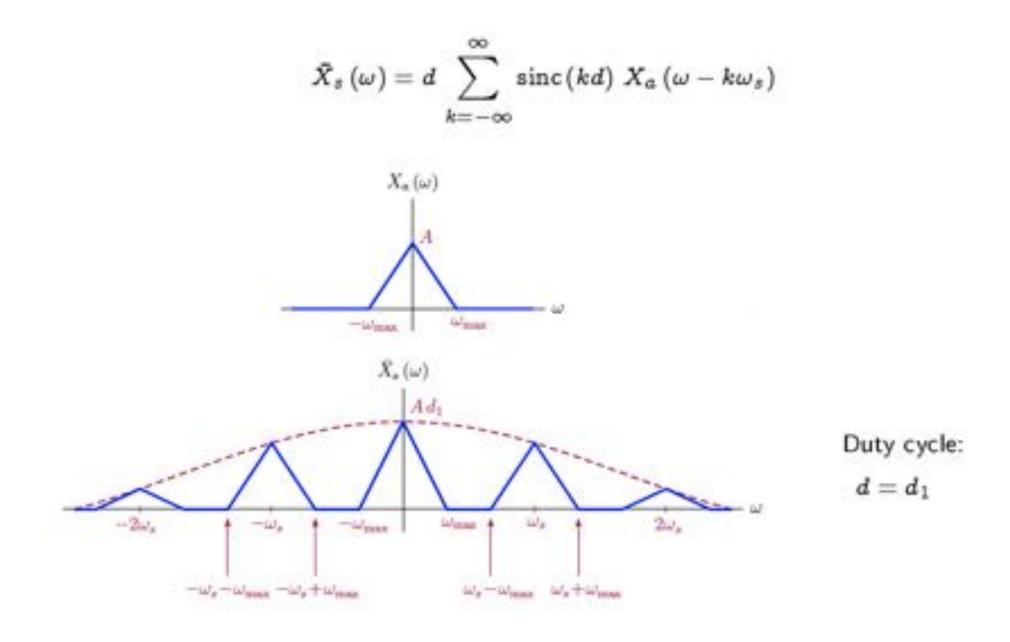
$$\tilde{p}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_s t}$$

Coefficients:

$$c_k = d\, \mathrm{sinc}\, (kd)$$

Spectrum of naturally sampled signal

$$ar{X}_{s}\left(\omega
ight)=d~\sum_{k=-\infty}^{\infty}\mathrm{sinc}\left(kd
ight)~X_{a}\left(\omega-k\omega_{s}
ight)$$



Natural Sampling

