
Chapter	5.	Fourier	Analysis	for	Discrete-Time	

Signals	and	Systems	

Chapter	Objec@ves	

1.  Learn	techniques	for	represen3ng	discrete-)me	periodic		

							signals	using	orthogonal	sets	of	periodic	basis	func3ons.	

2.  Study	proper3es	of	exponen)al,	trigonometric	and	compact	

							Fourier	series,	and	condi3ons	for	their	existence.		

3.  Learn	the	Fourier	transform	for	non-periodic	signal	as	an		

							extension	of	Fourier	series	for	periodic	signals	

4.				Study	the	proper)es	of	the	Fourier	transform.	Understand	the		

							concepts	of	energy	and	power	spectral	density.	



5.2	Exponen@al	Fourier	Series	(EFS)	

!x(t) = cke
jkω0t

k=−∞

∞

∑

Synthesis	equa@on:	

Analysis	equa@on:	

ck =
1
T0

!x(t)e− jkω0t dt
t0

t0+T0∫

Con@nue-Time	Fourier	Series	

!x[n]= cke
j(2π /N )kn

k=0

N−1

∑

Synthesis	equa@on:	

Analysis	equa@on:	

ck =
1
N

x[n]e− j(2π /N )kn

n=0

N−1

∑

Discrete-Time	Fourier	Series	



Linearity	

5.2.7	Proper@es	of	Fourier	Series	

x(t) ℑ← →⎯ ck

Where	a1	and	a2	are	any	two	constants	

Con@nue-Time	Fourier	Series	 Discrete-Time	Fourier	Series	

y(t) ℑ← →⎯ dk

a1x(t)+ a2y(t)
ℑ← →⎯ a1ck + a2dk

x[n] ℑ← →⎯ ck

y[n] ℑ← →⎯ dk

a1x[n]+ a2y[n]
ℑ← →⎯ a1ck + a2dk



Time	shiL	

5.2.7	Proper@es	of	Fourier	Series	

Con@nue-Time	Fourier	Series	 Discrete-Time	Fourier	Series	

!x(t) = cke
jkw0t

k=−∞

∞

∑

!x(t −τ ) = [cke
− jkw0τ ]e jkw0t

k=−∞

∞

∑

!x[n]= cke
j(2π /N )kn

k=0

N−1

∑

!x[n−m]= cke
j(2π /N )kn

k=0

N−1

∑ e− j(2π /N )km



5.3	Analysis	of	Non-periodic	Con@nuous-Time	Signals	

Discrete-Time	Fourier	Transform	

X(Ω) = x[n]e− jΩn

n=−∞

∞

∑x[n]= 1
2π

X(Ω)e jΩn dΩ
−π

π
∫

Synthesis	equa@on	(inverse):	 Analysis	equa@on	(forward):	

2πk
2M +1

− >Ω



5.3	Analysis	of	Non-periodic	Con@nuous-Time	Signals	

X(ω) = x(t)e− jwt dt
−∞

∞
∫

x(t) = 1
2π

X(ω)e jwt dw
−∞

∞
∫

Synthesis	equa@on	(inverse):	

Analysis	equa@on	(forward):	

Con@nue-Time	Fourier	Transform	 Discrete-Time	Fourier	Transform	

X(Ω) = x[n]e− jΩn

n=−∞

∞

∑

x[n]= 1
2π

X(Ω)e jΩn dΩ
−π

π
∫

Synthesis	equa@on	(inverse):	

Analysis	equa@on	(forward):	



Is	it	always	possible	to	determine	the	Fourier	series	coefficients?	

5.3.2	Existence	of	Fourier	Transform	

²  Absolute	summable:	
															

x[n] <∞
n=−∞

∞

∑

²  Square	-	summable:	
															

x[n] 2 <∞
n=−∞

∞

∑



Linearity:	

5.3.5	Proper@es	of	Fourier	Transform	

x1[n]
ℑ← →⎯ X1(Ω) and		

Where	a1	and	a2	are	any	two	constants	

Periodicity:	

x2[n]
ℑ← →⎯ X2(Ω)

α1x1[n]+α2x2[n]
ℑ← →⎯ α1X1(Ω)+α2X2(Ω)

X(Ω+ 2πr) = X(Ω)

for	all	integers	r	



5.3.5	Proper@es	of	Fourier	Transform	

Time	ShiLing:	

x[n] ℑ← →⎯ X(Ω) x[n−m] ℑ← →⎯ X(Ω)e− jΩm

Frequency	ShiLing:	

x[n]e− jΩ0n ℑ← →⎯ X(Ω−Ω0 )x[n] ℑ← →⎯ X(Ω)



Convolu@on	Property:	

5.3.5	Proper@es	of	Fourier	Transform	

x1[n]
ℑ← →⎯ X1(Ω)

x1[n]* x2[n]
ℑ← →⎯ X1(Ω)X2(Ω) X1(Ω)*X2(Ω)

ℑ← →⎯ x1[n]x2[n]

x2[n]
ℑ← →⎯ X2(Ω)



Parseval’s	Theorem:	

5.4	Energy	and	Power	in	Frequency	Domain	

For	a	periodic	power	signal	x(t)	

1
T0

x(t) 2 dt = ck
2

k=−∞

∞

∑t0

t0+T0∫

For	a	non-periodic	power	signal	

x(t) 2 dt =
−∞

∞
∫ X( f ) 2 df

−∞

∞
∫

Con@nue-Time	

1
N

x[n] 2

k=0

N−1

∑ = ck
2

k=0

N−1

∑

Discrete-Time	

Con@nue-Time	 Discrete-Time	

x[n] 2

k=0

N−1

∑ =
1
2π

X(Ω) 2 dΩ
−π

π
∫



Power	Spectral	Density:	

5.4	Energy	and	Power	in	Frequency	Domain	

Sx (Ω) = 2π ck
2δ(Ω− kΩ0 )

k=−∞

∞

∑



Autocorrela@on	Func@on:	

5.4	Energy	and	Power	in	Frequency	Domain	

For	a	energy	signal	x(t)	the	autocorrela@on	func@on	is	

rxx[m]= x[n]x[n+m]
n=−∞

∞

∑



System	func@on	(frequency	response)	

5.5	System	Func@on	Concept	

Impulse	response	(h[n])	 System	func3on	(H(Ω))	
Fourier	Transform	

H (Ω) =ℑ h[n]{ }= h[n]e− jΩn

n=−∞

∞

∑

In	general	,	H(w)	is	a	complex	func3on	of	w,	and	can	be	wriJen	in	
polar	form	as:	

H (Ω) = H (Ω) e jΘ(Ω)



5.8	Discrete	Fourier	Transform	

x[n]= cke
j(2π /N )kn

k=0

N−1

∑

Synthesis	equa@on	(inverse):	

ck =
1
N

x[n]e− j(2π /N )kn

n=0

N−1

∑

DTFS	 DTFT	

X(Ω) = x[n]e− jΩn

n=−∞

∞

∑

x[n]= 1
2π

X(Ω)e jΩn dΩ
−π

π
∫

Analysis	equa@on	(forward):	

DFT	

x[n]= 1
N

X[k]e j(2π /N )kn

k=0

N−1

∑

X[k]= x[n]e− j(2π /N )kn

n=0

N−1

∑

k	=	0,	1,	….,	N-1	

n	=	0,	1,	….,	N-1	

k	=	0,	1,	….,	N-1	

n	=	0,	1,	….,	N-1	



5.8	Discrete	Fourier	Transform	

DTFT	

X(Ω) = x[n]e− jΩn

n=−∞

∞

∑

DFT	

X[k]= x[n]e− j(2π /N )kn

n=0

N−1

∑

Rela@onship	of	the	DFT	to	the	DTFT	

The	DFT	of	a	length-N	signal	is	equal	to	its	DTFT	evaluated	at	a	set	of	N	
angular	frequencies	equally	spaced	in	the	interval	[0,	2π).	Let	an	
indexed	set	of	angular	frequencies	be	defined	as	

Ωk =
2πk
N
, k = 0,1,.....,N −1

X[k]= X(Ω) = x[n]e− j(2π /N )kn

n=0

N−1

∑



5.8	Discrete	Fourier	Transform	

Why	do	we	need	DFT?	

²  The	signal	x[n]	and	its	DFT	X[k]	each	have	N	samples,	making	the	
discrete	Fourier	transform	prac3cal	for	computer	implementa3on.	

	
²  Fast	and	efficient	algorithm,	know	as	fast	Fourier	transforms	(FFTs),	

are	available	for	the	computa3on	of	the	DFT.	

²  DFT	can	be	used	for	approxima3ng	other	forms	of	Fourier	series	
and	transforms	for	both	con3nuous-3me	and	discrete-3me	system.	

	
²  Dedicated	processors	are	available	for	fast	and	efficient.	

computa3on	of	the	DFT	with	minimal	or	no	programming	needed.	


