A non-periodic signal x(t):

We view this *non-periodic signal* as a "*periodic signal*" with **period as infinite large**.

For periodic signal:

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t} dt$$

For non-periodic signal: we make $T_o \rightarrow \infty$

$$c_k T_0 = \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t} dt$$
$$X(\omega) = \lim_{T_0 \to \infty} \left[c_k T_0 \right] = \lim_{T_0 \to \infty} \left[\int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t} dt \right]$$
$$= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

where $w = kw_0$

Fourier transform for continuous-time signals

Synthesis equation: (Inverse transform)

$$x\left(t
ight)=rac{1}{2\pi}\int_{-\infty}^{\infty}X\left(\omega
ight)\,e^{j\omega t}\,d\omega$$

Analysis equation: (Forward transform)

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Shorthand notation:

$$X(\omega) = \Im\{x(t)\} \qquad \qquad x(t) = \Im^{-1}\{X(w)\}$$

 $x(t) \stackrel{\Im}{\longleftrightarrow} X(w)$

x(t) : waveform in **time** domain

X(**f**) : same waveform in **frequency** domain

How to understand Fourier transform?

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt$$

For X(f), at any frequency f, all the x(t) (t from $-\infty$ to ∞) has contribution.

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} dt$$

Similar For x(t), at any frequency t, all the X(f) (f from $-\infty$ to ∞) has contribution.

How to understand Fourier Series and Fourier Transform ?

 $b_1 = \frac{4A}{\pi}$

 $\tilde{x}^{(1)}(t) = b_1 \sin(\omega_0 t)$

Time "t" is from -∞ to ∞ we call it time domain

Only one frequency is used in this example: $\omega_0 = \frac{2\pi}{T_0}$ or $f_0 = 1/T_0$

How to understand Fourier Series and Fourier Transform ?

How to understand Fourier Series and Fourier Transform ?

 $\tilde{x}^{(3)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t)$ $\tilde{x}(t)$ $\tilde{x}^{(3)}(t)$ 1.5 Time "t" is from $b_1 = \frac{4A}{\pi}$ 1 -∞ to ∞ we call it time domain 0.5 $b_2 = 0$ r(t)0 $b_3 = \frac{4A}{3\pi}$ three frequencies are used in this example: $\omega_0 = \frac{2\pi}{T_0}$ -0.5 and $2\omega_0$ $3\omega_0$ -1.5 0 1 2 3

t.

4.2.1 Approximating a periodic signal with trigonometric functions

Let's try a **15-frequency** approximation to $\tilde{x}(t)$ and see if the **approximate error** can be reduced.

How to understand Fourier Series and Fourier Transform ?

 $\tilde{x}^{(15)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots + b_{15} \sin(15\omega_0 t)$

Time Domain and Frequency Domain

Time Domain and Frequency Domain

sin(x) function can be viewed as a circle projected onto a line

Time Domain and Frequency Domain

time domain

frequency domain

x(t)

X(f)

Example of Music

Is it always possible to determine the Fourier series coefficients?

Dirichlet Condition

3F

♦ Finite absolute value: $\int_{-\infty}^{\infty} |x(t)| dt < \infty$

 \Leftrightarrow Finite number of discontinuities in $\tilde{x}(t)$

♦ Finite number of minima and maxima in one period

Example 4.12 Fourier Transform of a Rectangular Pulse

Using the forward Fourier transform integral, find the Fourier transform of the isolated rectangular pulse signal

$$x(t) = A \prod \left(\frac{t}{\tau}\right)$$

Example 4.12 Fourier Transform of a Rectangular Pulse

Example 4.12 Fourier Transform of a Rectangular Pulse

Linearity:

$$x_1(t) \xrightarrow{\Im} X_1(w)$$
 and $x_2(t) \xrightarrow{\Im} X_2(w)$

$$\alpha_1 x_1(t) + \alpha_2 x_2(t) \xleftarrow{\Im} \alpha_1 X_1(w) + \alpha_2 X_2(w)$$

Where a_1 and a_2 are any two constants

Duality:

 $x(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} X(w) \qquad \longrightarrow \qquad X(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} 2\pi x(-w)$ $x(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} X(f) \qquad \longrightarrow \qquad X(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} x(-f)$

Symmetry of Fourier Transform:

x(t): Real, $\text{Im}\{x(t)\} = 0$ \longrightarrow $X^*(w) = X(-w)$ x(t): Image, $\text{Re}\{x(t)\} = 0$ \longrightarrow $X^*(w) = -X(-w)$

Time Shifting:

$$x(t) \xleftarrow{\Im} X(w) \longrightarrow x(t-\tau) \xleftarrow{\Im} X(w) e^{-jw\tau}$$

Frequency Shifting:

$$x(t) \xleftarrow{\Im} X(w) \longrightarrow x(t)e^{-jw_0t} \xleftarrow{\Im} X(w-w_0)$$

Modulation Property:

$$x(t) \stackrel{\mathfrak{T}}{\longleftrightarrow} X(w)$$

$$x(t)\cos(w_0t) \xleftarrow{\Im} \frac{1}{2} \Big[X \Big(w - w_0 \Big) + X \Big(w + w_0 \Big) \Big]$$

Or $x(t)\cos(w_0t) \xleftarrow{\Im} \frac{1}{2} \Big[X \Big(f - f_0 \Big) + X \Big(f + f_0 \Big) \Big]$

$$x(t)\sin(w_0t) \stackrel{\mathfrak{T}}{\longleftrightarrow} \frac{1}{2} \Big[X\big(w - w_0\big) e^{-j\pi/2} + X\big(w + w_0\big) e^{j\pi/2} \Big]$$

More general format

$$x(t)\cos(w_0t+\theta) \xleftarrow{\Im} \frac{1}{2} \left[e^{j\theta} X \left(f - f_0 \right) + e^{-j\theta} X \left(f + f_0 \right) \right]$$

Modulation Property:

Find the Fourier Transform of the modulated pulse given by

$$x(t) = \begin{cases} \cos(2\pi f_0 t), & |t| < \tau \\ 0, & |t| < \tau \end{cases}$$

Modulation Property:

Convolution Property: