4.3 Analysis of Non-periodic Continuous-Time Signals

A non-periodic signal x (t):

We view this non-periodic signal as a “periodic signal” with
period as infinite large.




4.3 Analysis of Non-periodic Continuous-Time Signals

For periodic signal:
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4.3 Analysis of Non-periodic Continuous-Time Signals

Fourser transform for continuous-time signals

Synthesis equation: (Inverse transform)

R jut
z(t) = o X (w) ¢! dw
- OO

Analysis equation: (Forward transform)

X (w) = /w z(t) e ¥t dy

- QO

Shorthand notation:

X(w)=3{x(1)} x() = ST X (W)}

xX(1)—>—> X (w)



4.3 Analysis of Non-periodic Continuous-Time Signals

Fourter transform for continuous-time signals (using f instead of w)

Synthesis equation: (Inverse transform)

()= [ X() Mo

Analysis equation; (Forward transform)

X(f)= /w z(t) e™ 7371 4y

- Q0

x(t) : waveform in time domain

X(f) : same waveform in frequency domain



4.3 Analysis of Non-periodic Continuous-Time Signals

How to understand Fourier transform?

X(f)= [ xne** ay
For X(f), at any frequency f, all the x(t) ( t from -o= to o= ) has contribution.
x0) = [ X(He* ' ar

Similar For x(t), at any frequency t, all the X(f) ( f from -o= to o= ) has
contribution.



4.3 Analysis of Non-periodic Continuous-Time Signals
Time Domain
How to understand Fourier Series and Fourier Transform ?
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4.3 Analysis of Non-periodic Continuous-Time Signals
Time Domain

How to understand Fourier Series and Fourier Transform ?
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4.3 Analysis of Non-periodic Continuous-Time Signals
Time Domain

How to understand Fourier Series and Fourier Transform ?

X9(t) = b, sin(w, 1) + b, sin(2w,t) + b, sin(3w,t)
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4.2.1 Approximating a periodic signal with trigonometric functions

Let’s try a 15-frequency approximation to x(z) and see if the approximate
error can be reduced.
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4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain

How to understand Fourier Series and Fourier Transform ?

(1) = b, sin(w,t) + b, sinRw,t) + .

. +b,sin(15w,t)
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4.3 Analysis of Non-periodic Continuous-Time Signals
Time Domain
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4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain



4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain
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sin(x) function can be viewed as a circle projected onto a line



4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain
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4.3 Analysis of Non-periodic Continuous-Time Signals

time domain frequency domain

x(t) X(f)

Example of Music




4.3.2 Existence of Fourier Transform

Is it always possible to determine the Fourier series coefficients?

Dirichlet Condition

3F

< Finite absolute value: foo x(1)|dt < o0

< Finite number of discontinuities in ()

<> Finite number of minima and maxima in one period



4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse

Using the forward Fourier transform integral, find the Fourier
transform of the isolated rectangular pulse signal
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4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse




4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse
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4.3.5 Properties of Fourier Transform

Linearity:

HO—X,(w)  and X)X, (w)

oy xp (1) + oy xy (2 )$ o X;(w)+ay X, (w)

Where g, and a, are any two constants

Duality:
X(1)—>—> X (w) —> X (1)< 2mx(-w)

)= X(f) — X () <—>x(~)



4.3.5 Properties of Fourier Transform

Symmetry of Fourier Transform:

x(t): Real, Im{x(1)}=0 —> X (w)=X(-w)

x(t): Image, Re{x(H)}=0 ——> X (w)=-X(-w)

Time Shifting:

—jwT

() ——sX(w) x(t - 7)< X(w)e

Frequency Shifting:

X(O)—>X(w) > x(t)e‘jWOtAX(w—wo)



4.3.5 Properties of Fourier Transform

Modulation Property:

X()<——> X (w)

x(t)cos(wot)A% X(w - Wy ) + X(w + Wy )]

Or x(t)cos(wot)A%:X (f-fo)+X(f +fo)]

x<r>sin<wor)¢%[x(w )¢ 24 X (wwg )7 ]

More general format

x(z)cos(wome)i%[eﬁ)( (f=fo)+e X (f +fo)]



4.3.5 Properties of Fourier Transform

Modulation Property:

Find the Fourier Transform of the modulated pulse given by

cos(m fot), ltl<t
x(1) =1

0, ltlkt




4.3.5 Properties of Fourier Transform

Modulation Property:

. [
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4.3.5 Properties of Fourier Transform

Convolution Property:

X (1)< X; () Xo (1) <——> X, (W)

{

X1 (£) * X (1) <——> X; (W)X, () X1 (W) * X, () < x; (1), (1)



