4.3 Analysis of Non-periodic Continuous-Time Signals

A non-periodic signal $x(t)$:

We view this non-periodic signal as a "periodic signal" with period as infinite large.

4.3 Analysis of Non-periodic Continuous-Time Signals

For periodic signal:

$$
c_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j k \omega_{0} t} d t
$$

For non-periodic signal: we make $T_{0}->\infty$

$$
\begin{aligned}
& c_{k} T_{0}=\int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j k \omega_{0} t} d t \\
& X(\omega)=\lim _{T_{0} \rightarrow \infty}\left[c_{k} T_{0}\right]=\lim _{T_{0} \rightarrow \infty}\left[\int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j k \omega_{0} t} d t\right] \\
&=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& \text { where } w=k w_{0}
\end{aligned}
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Fourier transform for continuous-time signals

Synthesis equation: (Inverse transform)

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

Analysis equation: (Forward transform)

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

Shorthand notation:

$$
\begin{aligned}
& X(\omega)=\mathfrak{J}\{x(t)\} \\
& x(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} X(t)=\mathfrak{J}^{-1}\{X(w)\}
\end{aligned}
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Fourier transform for continuous-time signals (using f instead of ω)

Synthesis equation: (Inverse transform)

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

Analysis equation: (Forward transform)

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

$\boldsymbol{x}(\boldsymbol{t})$: waveform in time domain
$X(f)$: same waveform in frequency domain

4.3 Analysis of Non-periodic Continuous-Time Signals

How to understand Fourier transform?

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

For $X(f)$, at any frequency f, all the $x(t)(t$ from $-\infty$ to $\infty)$ has contribution.

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d t
$$

Similar For $x(t)$, at any frequency t, all the $X(f)(f$ from $-\infty$ to $\infty)$ has contribution.

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain
How to understand Fourier Series and Fourier Transform ?

$$
\tilde{x}^{(1)}(t)=b_{1} \sin \left(\omega_{0} t\right)
$$

Time " t " is from $-\infty$ to ∞ we call it time domain

Only one frequency is used in this example: $\omega_{0}=\frac{2 \pi}{T_{0}}$ or $f_{0}=1 / T_{0}$

$$
b_{1}=\frac{4 A}{\pi}
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain

How to understand Fourier Series and Fourier Transform?

$$
\tilde{x}^{(2)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)
$$

Time " t " is from $-\infty$ to ∞ we call it time domain two frequencies are used in this example: $\omega_{0}=\frac{2 \pi}{T_{0}}$ and $\quad 2 \omega_{0}$

$$
\begin{aligned}
& b_{1}=\frac{4 A}{\pi} \\
& b_{2}=0
\end{aligned}
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain
How to understand Fourier Series and Fourier Transform ?

$$
\tilde{x}^{(3)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+b_{3} \sin \left(3 \omega_{0} t\right)
$$

Time " t " is from $-\infty$ to ∞ we call it time domain three frequencies are used in this example: $\omega_{0}=\frac{2 \pi}{T_{0}}$ and $2 \omega_{0} \quad 3 \omega_{0}$

$$
\begin{aligned}
& b_{1}=\frac{4 A}{\pi} \\
& b_{2}=0 \\
& b_{3}=\frac{4 A}{3 \pi}
\end{aligned}
$$

4.2.1 Approximating a periodic signal with trigonometric functions

Let's try a 15 -frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\tilde{x}^{(15)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+\ldots . \quad+b_{15} \sin \left(15 \omega_{0} t\right)
$$

$$
\tilde{\varepsilon}_{15}(t)=\tilde{x}(t)-\tilde{x}^{(15)}(t)
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain
How to understand Fourier Series and Fourier Transform?

$$
\tilde{x}^{(15)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+\ldots . \quad+b_{15} \sin \left(15 \omega_{0} t\right)
$$

Time " t " is from $-\infty$ to ∞ we call it time domain

15 frequencies are used in this example: $\omega_{0}=\frac{2 \pi}{T_{0}}$ and $2 \omega_{0} \quad 3 \omega_{0}, \ldots$

$$
\begin{aligned}
& b_{1}=\frac{4 A}{\pi} \\
& b_{2}=0 \\
& b_{3}=\frac{4 A}{3 \pi} \\
& b_{4}=0 \\
& b_{5}=\frac{4 A}{5 \pi}
\end{aligned}
$$

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain

4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain

$\sin (x)$ function can be viewed as a circle projected onto a line
4.3 Analysis of Non-periodic Continuous-Time Signals

Time Domain and Frequency Domain

4.3 Analysis of Non-periodic Continuous-Time Signals

time domain
$$
x(t)
$$

frequency domain
$X(f)$

Example of Music

4.3.2 Existence of Fourier Transform

Is it always possible to determine the Fourier series coefficients?

Dirichlet Condition

$3 F$

\diamond Finite absolute value: $\int_{-\infty}^{\infty}|x(t)| d t<\infty$
\triangleleft Finite number of discontinuities in $\tilde{x}(t)$
\diamond Finite number of minima and maxima in one period

4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse

Using the forward Fourier transform integral, find the Fourier transform of the isolated rectangular pulse signal

$$
x(t)=A \prod\left(\frac{t}{\tau}\right)
$$

4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse

4.3.2 Existence of Fourier Transform

Example 4.12 Fourier Transform of a Rectangular Pulse

4.3.5 Properties of Fourier Transform

Linearity:

$$
\begin{aligned}
x_{1}(t) & \stackrel{\Im}{\longleftrightarrow} X_{1}(w) \quad \text { and } \quad x_{2}(t) \stackrel{\Im}{\longleftrightarrow} X_{2}(w) \\
\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t) & \stackrel{\Im}{\longleftrightarrow} \alpha_{1} X_{1}(w)+\alpha_{2} X_{2}(w)
\end{aligned}
$$

Where a_{1} and a_{2} are any two constants
Duality:

$$
\begin{aligned}
& x(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} X(w) \quad \square X(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} 2 \pi x(-w) \\
& x(t) \stackrel{\Im}{\longleftrightarrow} X(f) \quad \square X(t) \stackrel{\Im}{\longleftrightarrow} x(-f)
\end{aligned}
$$

4.3.5 Properties of Fourier Transform

Symmetry of Fourier Transform:
$x(t):$ Real, $\operatorname{Im}\{x(t)\}=0 \quad X^{*}(w)=X(-w)$
$x(t)$: Image, $\operatorname{Re}\{x(t)\}=0 \longmapsto X^{*}(w)=-X(-w)$

Time Shifting:

$$
x(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} X(w) \quad \longleftrightarrow x(t-\tau) \stackrel{\mathfrak{J}}{\longleftrightarrow} X(w) e^{-j w \tau}
$$

Frequency Shifting:

$$
x(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} X(w) \quad \longleftrightarrow x(t) e^{-j w_{0} t} \stackrel{\mathfrak{J}}{\longleftrightarrow} X\left(w-w_{0}\right)
$$

4.3.5 Properties of Fourier Transform

Modulation Property:

$$
\begin{gathered}
x(t) \stackrel{\Im}{\longleftrightarrow} X(w) \\
x(t) \cos \left(w_{0} t\right) \stackrel{\Im}{\longleftrightarrow} \frac{1}{2}\left[X\left(w-w_{0}\right)+X\left(w+w_{0}\right)\right] \\
\text { Or } x(t) \cos \left(w_{0} t\right) \stackrel{\Im}{\longleftrightarrow} \frac{1}{2}\left[X\left(f-f_{0}\right)+X\left(f+f_{0}\right)\right] \\
x(t) \sin \left(w_{0} t\right) \stackrel{\Im}{\longleftrightarrow} \frac{1}{2}\left[X\left(w-w_{0}\right) e^{-j \pi / 2}+X\left(w+w_{0}\right) e^{j \pi / 2}\right]
\end{gathered}
$$

More general format

$$
x(t) \cos \left(w_{0} t+\theta\right) \stackrel{\Im}{\longleftrightarrow} \frac{1}{2}\left[e^{j \theta} X\left(f-f_{0}\right)+e^{-j \theta} X\left(f+f_{0}\right)\right]
$$

4.3.5 Properties of Fourier Transform

Modulation Property:
Find the Fourier Transform of the modulated pulse given by

$$
x(t)=\left\{\begin{array}{c}
\cos \left(2 \pi f_{0} t\right),|t|<\tau \\
0,|t|<\tau
\end{array}\right.
$$

4.3.5 Properties of Fourier Transform

Modulation Property:

4.3.5 Properties of Fourier Transform

Convolution Property:

$$
\begin{gathered}
x_{1}(t) \stackrel{\Im}{\longleftrightarrow} X_{1}(w) \quad x_{2}(t) \stackrel{\mathfrak{J}}{\longleftrightarrow} X_{2}(w) \\
x_{1}(t) * x_{2}(t) \stackrel{\Im}{\longleftrightarrow} X_{1}(w) X_{2}(w) \quad X_{1}(w) * X_{2}(w) \stackrel{\Im}{\longleftrightarrow} x_{1}(t) x_{2}(t)
\end{gathered}
$$

