Chapter 4. Fourier Analysis for Continuous-Time Signals and Systems

Chapter Objectives

1. Learn techniques for representing continuous-time periodic signals using orthogonal sets of periodic basis functions.
2. Study properties of exponential, trigonometric and compact Fourier series, and conditions for their existence.
3. Learn the Fourier transform for non-periodic signal as an extension of Fourier series for periodic signals
4. Study the properties of the Fourier transform. Understand the concepts of energy and power spectral density.

4.1 Introduction

How to deal with a complicated signal ?

4.1 Introduction

How to deal with a complicated signal ?
Using a series of $\sin (t)$, or $\cos (t)$ functions.
Fourier Series and Fourier Transform

4.1 Introduction

How to deal with a complicated signal ?
Using a series of rectangular pulses

4.1 Introduction

What is Fourier, Fourier Series, and Fourier Transform ??

Fourier is a man, a genius

Name: Jean Baptiste Joseph Fourier
Year: 1768-1830
Nationality: French
Fields: Mathematician, physicist, historian

4.1 Introduction

Fourier Series and Fourier Transformer

A weighted summation of Sines and Cosines of different frequencies can be used to represent periodic (Fourier Series), or non-periodic (Fourier Transform) functions.

Is this true?
People didn't believe that, including Lagrange, Laplace, Poisson, and other big wigs.

But, yes, this is true, this is great !!

4.2.1 Approximating a periodic signal with trigonometric functions

For a periodic signal $\tilde{x}(t)$ which is periodic with period T_{0} has the property

$$
\tilde{x}(t+T)=\tilde{x}(t)
$$

for all t

Periodic square-wave signal

4.2.1 Approximating a periodic signal with trigonometric functions

Suppose that we wish to approximate this signal using just one trigonometric function
1.) Q: Should we use a sine or a cosine function?

A: choose sine function. Because both $\tilde{x}(t)$ and a sine function $\left(b_{1} \sin (\omega t)\right)$ are odd symmetry. The fundamental period of sine function is T_{0} as $\tilde{x}(t)$.

$$
\tilde{x}^{(1)}(t)=b_{1} \sin \left(\omega_{0} t\right)
$$

2.) Q: How should we adjust the parameters of the trigonometric function?

A: find the parameters that can minimize the approximation error function.

$$
\tilde{\varepsilon}_{1}(t)=\tilde{x}(t)-\tilde{x}^{(1)}(t)=\tilde{x}(t)-b_{1} \sin \left(\omega_{0} t\right)
$$

4.2.1 Approximating a periodic signal with trigonometric functions

The best approximation to $\tilde{x}(t)$ using only one trigonometric function is

$$
\tilde{x}^{(1)}(t)=b_{1} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\frac{2 \pi}{T_{0}} \quad b_{1}=\frac{4 A}{\pi}
$$

4.2.1 Approximating a periodic signal with trigonometric functions

Let's try a two-frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\begin{gathered}
\tilde{x}^{(2)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right) \\
\tilde{\varepsilon}_{2}(t)=\tilde{x}(t)-\tilde{x}^{(2)}(t)=\tilde{x}(t)-b_{1} \sin \left(\omega_{0} t\right)-b_{2} \sin \left(2 \omega_{0} t\right) \\
b_{2}=0
\end{gathered}
$$

4.2.1 Approximating a periodic signal with trigonometric functions

Let's try a three-frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\begin{gathered}
\tilde{x}^{(3)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+b_{3} \sin \left(3 \omega_{0} t\right) \\
\tilde{\varepsilon}_{3}(t)=\tilde{x}(t)-\tilde{x}^{(3)}(t)=\tilde{x}(t)-b_{1} \sin \left(\omega_{0} t\right)-b_{2} \sin \left(2 \omega_{0} t\right)-b_{3} \sin \left(3 \omega_{0} t\right)
\end{gathered}
$$

4.2.1 Approximating a periodic signal with trigonometric functions

Let's try a 15 -frequency approximation to $\tilde{x}(t)$ and see if the approximate error can be reduced.

$$
\tilde{x}^{(15)}(t)=b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+\ldots . \quad+b_{15} \sin \left(15 \omega_{0} t\right)
$$

$$
\tilde{\varepsilon}_{15}(t)=\tilde{x}(t)-\tilde{x}^{(15)}(t)
$$

4.2.1 Approximating a periodic signal with trigonometric functions

We can draw some conclusion based on previous observations:
\diamond The normalized average power of the error signal $\tilde{\varepsilon}_{3}(t)$ seems to be less than that of the error $\tilde{\varepsilon}_{1}(t)$
\diamond Consequently, $\tilde{x}^{(3)}(t)$ is a better approximation to the signal than $\tilde{x}^{(1)}(t)$
\diamond On the other hand, the peak value of the approximate error seems to be $\pm A$ for both $\tilde{\varepsilon}_{1}(t)$ and $\tilde{\varepsilon}_{3}(t)$. If we try higher-order approximations using more trigonometric basic function, the peak approximation error would still be $\pm A$.

4.2.2 Trigonometric Fourier Series (TFS)

We may want to represent this signal using a linear combination of sinusoidal functions in the form:

$$
\begin{aligned}
\tilde{x}(t)=a_{0}+ & a_{1} \cos \left(\omega_{0} t\right)+a_{2} \cos \left(2 \omega_{0} t\right)+\ldots+a_{k} \cos \left(k \omega_{0} t\right)+\ldots \\
& +b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+\ldots+b_{k} \sin \left(k \omega_{0} t\right)+\ldots
\end{aligned}
$$

In a compact notation (trigonometric Fourier Series):

$$
\tilde{x}(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k w_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k w_{0} t\right)
$$

Where $\omega_{0}=2 \pi f_{0}$ is the fundamental frequency in rad $/ \mathrm{s}$.
and the sinusoidal functions with radian frequency $\omega_{0}, 2 \omega_{0}, \ldots k \omega_{0}$ are referred to as the basis functions $\left(\boldsymbol{\operatorname { c o s }}\left(k \omega_{0} t\right), \quad \boldsymbol{\operatorname { s i n }}\left(k \omega_{0} t\right)\right)$

4.2.2 Trigonometric Fourier Series (TFS)

Synthesis equation:

$\tilde{x}(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k w_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k w_{0} t\right)$
We need to determine the coefficients: a_{0}, a_{k}, and b_{k}

4.2.2 Trigonometric Fourier Series (TFS)

Useful orthogonal sets:

$$
\begin{gathered}
\int_{t_{0}}^{t_{0}+T_{0}} \cos \left(m \omega_{0} t\right) \cos \left(k \omega_{0} t\right) d t=\left\{\begin{array}{l}
\frac{T_{0}}{2}, m=k \\
0, m \neq k
\end{array}\right. \\
\int_{t_{0}}^{t_{0}+T_{0}} \sin \left(m \omega_{0} t\right) \sin \left(k \omega_{0} t\right) d t=\left\{\begin{array}{l}
\frac{T_{0}}{2}, m=k \\
0, m \neq k
\end{array}\right. \\
\int^{t_{0}+T_{0}} \cos \left(m \omega_{0} t\right) \sin \left(k \omega_{0} t\right) d t=0
\end{gathered}
$$

4.2.2 Trigonometric Fourier Series (TFS)

Synthesis equation:

$$
\tilde{x}(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k w_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k w_{0} t\right)
$$

Analysis equation:

$$
\begin{aligned}
& a_{k}=\frac{2}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) \cos \left(k w_{0} t\right) d t, \text { for } k=1, \ldots, \infty \\
& b_{k}=\frac{2}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) \sin \left(k w_{0} t\right) d t, \text { for } k=1, \ldots, \infty \\
& a_{0}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) d t \quad \text { (dc component) }
\end{aligned}
$$

4.2.2 Trigonometric Fourier Series (TFS)

Example 4.1 Trigonometric Fourier Series of a Periodic Pulse Train

A pulse-train signal $\tilde{x}(t)$ with a period of $T_{0}=3$ seconds is shown as below. Determine the coefficients of the TFS representation of this signal.

4.2.2 Trigonometric Fourier Series (TFS)

Example 4.4 Trigonometric Fourier Series of a Square Wave

Determine the TFS for the periodic square wave shown as below.

4.2.3 Exponential Fourier Series (EFS)

4.2.3 Exponential Fourier Series (EFS)

General Format of Exponential Fourier Series

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

EXAMPLES

Single-tone Signals

$$
\begin{aligned}
\tilde{x}(t) & =A \cos \left(\omega_{0} t+\theta\right) & \\
& =\frac{A}{2}\left(e^{j\left(\omega_{0} t+\theta\right)}+e^{-j\left(\omega_{0} t+\theta\right)}\right) & \text { Comparing with general format } \\
& =\frac{A}{2}\left(e^{j \theta} e^{j \omega_{0} t}+e^{-j \theta} e^{-j \omega_{0} t}\right) & c_{1}=\frac{A}{2} e^{j \theta} \quad c_{-1}=\frac{A}{2} e^{-j \theta}
\end{aligned}
$$

4.2.3 Exponential Fourier Series (EFS)

General Format of Exponential Fourier Series

$$
\begin{gathered}
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t} \quad \tilde{x}(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k w_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k w_{0} t\right) \\
c_{k}=\frac{1}{2}\left(a_{k}-j b_{k}\right)
\end{gathered}
$$

4.2.3 Exponential Fourier Series (EFS)

General Format of Exponential Fourier Series

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

We need to find out coefficient C_{k}

4.2.3 Exponential Fourier Series (EFS)

Useful orthogonal set

$$
\int_{t_{0}}^{t_{0}+T_{0}} e^{j m \omega_{0} t} e^{-j k \omega_{0} t} d t=\left\{\begin{array}{cc}
T_{0}, & m=k \\
0, & m \neq k
\end{array}\right.
$$

4.2.3 Exponential Fourier Series (EFS)

Synthesis equation:

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

Analysis equation:

$$
c_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) e^{-j k \omega_{0} t} d t
$$

4.2.3 Exponential Fourier Series (EFS)

Example 4.5 Exponential Fourier Series For a Periodic Pulse Train

Determine the EFS for the periodic square wave shown as below.

$$
\begin{gathered}
\tilde{x}(t)=\sum_{k=-\infty}^{\infty}\left(\frac{\sin (k \pi / 3)}{\pi k}\right) e^{j 2 \pi k t / 3} \\
c_{k}=\frac{\sin (k \pi / 3)}{\pi k} \\
c_{0}=1 / 3
\end{gathered}
$$

4.2.3 Exponential Fourier Series (EFS)

Example 4.5 Exponential Fourier Series For a Periodic Pulse Train

Determine the EFS for the periodic square wave shown as below.

4.2.3 Exponential Fourier Series (EFS)

Example 4.10 Spectrum of half-wave rectified sinusoidal signal

Determine the EFS coefficients and graph the line spectrum for the half-wave periodic signal $\tilde{x}(t)$ defined by .

$$
\tilde{x}(t)=\left\{\begin{array}{c}
\sin \left(w_{0} t\right), 0 \leq t \leq T_{0} / 2 \\
0, T_{0} / 2 \leq t<T_{0}
\end{array} \quad \text { and } \quad \tilde{x}\left(t+T_{0}\right)=\tilde{x}(t)\right.
$$

4.2.5 Existence of Fourier Series

Is it always possible to determine the Fourier series coefficients?

Dirichlet Condition

3F

\diamond Finite absolute value: $\int_{0}^{T_{0}}|\tilde{x}(t)| d t<\infty$
\diamond Finite number of discontinuities in $\tilde{x}(t)$
\diamond Finite number of minima and maxima in one period

4.2.7 Properties of Fourier Series

Linearity:

$$
\begin{aligned}
& \tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k w_{0} t} \quad \text { and } \quad \tilde{y}(t)=\sum_{k=-\infty}^{\infty} d_{k} e^{j k w_{0} t} \\
& a_{1} \tilde{x}(t)+a_{2} \tilde{y}(t)=\sum_{k=-\infty}^{\infty}\left[a_{1} c_{k}+a_{2} d_{k}\right] e^{j k w_{0} t}
\end{aligned}
$$

Where a_{1} and a_{2} are any two constants
Time shifting:

$$
\begin{aligned}
& \tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k w_{0} t} \\
& \tilde{x}(t-\tau)=\sum_{k=-\infty}^{\infty}\left[c_{k} e^{-j k w_{0} \tau}\right] e^{j k w_{0} t}
\end{aligned}
$$

