Chapter 4. Fourier Analysis for Continuous-Time Signals and Systems

Chapter Objectives

- Learn techniques for representing continuous-time periodic signals using orthogonal sets of periodic basis functions.
- 2. Study properties of *exponential, trigonometric* and *compact Fourier series*, and conditions for their existence.
- 3. Learn the *Fourier transform* for *non-periodic* signal as an extension of Fourier series for periodic signals
- 4. Study the *properties* of the Fourier transform. Understand the concepts of *energy* and *power spectral density*.

How to deal with a complicated signal?

How to deal with a complicated signal?

Using a series of *sin(t)*, or *cos(t)* functions. *Fourier Series and Fourier Transform*

How to deal with a complicated signal?

Using a series of *rectangular pulses*

What is Fourier, Fourier Series, and Fourier Transform??

Fourier is a man, a genius

Name: Jean Baptiste Joseph Fourier

Year: 1768-1830

Nationality: French

Fields: Mathematician, physicist, historian

Fourier Series and Fourier Transformer

A weighted summation of *Sines* and *Cosines* of different frequencies can be used to represent periodic (*Fourier Series*), or non-periodic (*Fourier Transform*) functions.

Is this true?

People didn't believe that, including Lagrange, Laplace, Poisson, and other big wigs.

But, yes, this is true, this is great !!

For a periodic signal $\tilde{\chi}(t)$ which is periodic with period T_0 has the property

$$\tilde{x}(t+T) = \tilde{x}(t)$$

for all t

Periodic square-wave signal

Suppose that we wish to approximate this signal using just one trigonometric function

1.) **Q**: Should we use a *sine* or a *cosine* function?

A: choose *sine* function. Because both $\tilde{x}(t)$ and a *sine* function ($b_1 \sin(\omega t)$) are odd symmetry. The fundamental period of *sine* function is T_0 as $\tilde{x}(t)$.

$$\tilde{x}^{(1)}(t) = b_1 \sin(\omega_0 t)$$

2.) Q: How should we adjust the parameters of the trigonometric function?

A: find the parameters that can minimize the *approximation error* function.

$$\tilde{\varepsilon}_1(t) = \tilde{x}(t) - \tilde{x}^{(1)}(t) = \tilde{x}(t) - b_1 \sin(\omega_0 t)$$

The best approximation to $\tilde{x}(t)$ using only one trigonometric function is

$$\tilde{x}^{(1)}(t) = b_1 \sin(\omega_0 t)$$
 $\omega_0 = \frac{2\pi}{T_0}$ $b_1 = \frac{4A}{\pi}$

Let's try a two-frequency approximation to $\tilde{\chi}(t)$ and see if the **approximate error** can be reduced.

$$\tilde{x}^{(2)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t)$$

$$\tilde{\varepsilon}_2(t) = \tilde{x}(t) - \tilde{x}^{(2)}(t) = \tilde{x}(t) - b_1 \sin(\omega_0 t) - b_2 \sin(2\omega_0 t)$$

Let's try a three-frequency approximation to $\tilde{x}(t)$ and see if the **approximate error** can be reduced.

$$\tilde{x}^{(3)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t)$$

$$\tilde{\varepsilon}_3(t) = \tilde{x}(t) - \tilde{x}^{(3)}(t) = \tilde{x}(t) - b_1 \sin(\omega_0 t) - b_2 \sin(2\omega_0 t) - b_3 \sin(3\omega_0 t)$$

Let's try a **15-frequency** approximation to $\tilde{x}(t)$ and see if the **approximate error** can be reduced.

$$\tilde{x}^{(15)}(t) = b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots + b_{15} \sin(15\omega_0 t)$$

$$\tilde{\varepsilon}_{15}(t) = \tilde{x}(t) - \tilde{x}^{(15)}(t)$$

We can draw some conclusion based on previous observations:

- \Leftrightarrow The normalized average power of the error signal $\tilde{\varepsilon}_3(t)$ seems to be less than that of the error $\tilde{\varepsilon}_1(t)$
- \Leftrightarrow Consequently, $\tilde{x}^{(3)}(t)$ is a better approximation to the signal than $\tilde{x}^{(1)}(t)$
- \Rightarrow On the other hand, the peak value of the approximate error seems to be $\pm A$ for both $\tilde{\varepsilon}_1(t)$ and $\tilde{\varepsilon}_3(t)$. If we try higher-order approximations using more trigonometric basic function, the peak approximation error would still be $\pm A$.

We may want to represent this signal using a linear combination of sinusoidal functions in the form:

$$\tilde{x}(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + \dots + a_k \cos(k\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots + b_k \sin(k\omega_0 t) + \dots$$

In a compact notation (trigonometric Fourier Series):

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kw_0 t) + \sum_{k=1}^{\infty} b_k \sin(kw_0 t)$$

Where $\omega_0 = 2\pi f_0$ is the **fundamental frequency** in rad/s.

and the sinusoidal functions with radian frequency $\omega_0, 2\omega_0, ...k\omega_0$ are referred to as the basis functions ($\cos(k\omega_0 t)$, $\sin(k\omega_0 t)$)

Synthesis equation:

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kw_0 t) + \sum_{k=1}^{\infty} b_k \sin(kw_0 t)$$

We need to determine the coefficients: a_0 , a_k , and b_k

Useful orthogonal sets:

$$\int_{t_0}^{t_0+T_0} \cos(m\omega_0 t) \cos(k\omega_0 t) dt = \begin{cases} \frac{T_0}{2}, & m=k \\ 0, & m \neq k \end{cases}$$

$$\int_{t_0}^{t_0+T_0} \sin(m\omega_0 t) \sin(k\omega_0 t) dt = \begin{cases} \frac{T_0}{2}, & m=k\\ 0, & m\neq k \end{cases}$$

$$\int_{t_0}^{t_0+T_0} \cos(m\omega_0 t) \sin(k\omega_0 t) dt = 0$$

Synthesis equation:

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kw_0 t) + \sum_{k=1}^{\infty} b_k \sin(kw_0 t)$$

Analysis equation:

$$a_k = \frac{2}{T_0} \int_{t_0}^{t_0 + T_0} \tilde{x}(t) \cos(kw_0 t) dt$$
, for $k = 1, ..., \infty$

$$b_k = \frac{2}{T_0} \int_{t_0}^{t_0 + T_0} \tilde{x}(t) \sin(kw_0 t) dt, \text{ for } k = 1, ..., \infty$$

$$a_0 = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} \tilde{x}(t) dt \qquad \text{(dc component)}$$

Example 4.1 Trigonometric Fourier Series of a Periodic Pulse Train

A pulse-train signal $\tilde{x}(t)$ with a period of T_0 = 3 seconds is shown as below. Determine the coefficients of the TFS representation of this signal.

Example 4.4 Trigonometric Fourier Series of a Square Wave

Determine the TFS for the periodic square wave shown as below.

TFS
$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kw_0 t) + \sum_{k=1}^{\infty} b_k \sin(kw_0 t)$$

$$\cos(k\omega_0 t) = \frac{1}{2} \left(e^{jkw_0 t} + e^{-jkw_0 t} \right)$$

$$\sin(k\omega_0 t) = \frac{1}{2j} \left(e^{jkw_0 t} - e^{-jkw_0 t} \right)$$
EFS $\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$

General Format of Exponential Fourier Series

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

EXAMPLES

Single-tone Signals

$$\begin{split} \tilde{x}(t) &= A\cos(\omega_0 t + \theta) \\ &= \frac{A}{2} \Big(e^{j(\omega_0 t + \theta)} + e^{-j(\omega_0 t + \theta)} \Big) \\ &= \frac{A}{2} \Big(e^{j\theta} e^{j\omega_0 t} + e^{-j\theta} e^{-j\omega_0 t} \Big) \end{split} \qquad \text{Comparing with general format} \\ &= \frac{A}{2} \Big(e^{j\theta} e^{j\omega_0 t} + e^{-j\theta} e^{-j\omega_0 t} \Big) \\ &c_1 = \frac{A}{2} e^{j\theta} \qquad c_{-1} = \frac{A}{2} e^{-j\theta} \end{split}$$

General Format of Exponential Fourier Series

EFS

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

$$\mathsf{TFS}$$

$$\tilde{x}(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kw_0 t) + \sum_{k=1}^{\infty} b_k \sin(kw_0 t)$$

$$c_k = \frac{1}{2} (a_k - jb_k)$$

General Format of Exponential Fourier Series

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

We need to find out coefficient C_k

Useful orthogonal set

$$\int_{t_0}^{t_0 + T_0} e^{jm\omega_0 t} e^{-jk\omega_0 t} dt = \begin{cases} T_0, & m = k \\ 0, & m \neq k \end{cases}$$

Synthesis equation:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Analysis equation:

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} \tilde{x}(t) e^{-jk\omega_0 t} dt$$

Example 4.5 Exponential Fourier Series For a Periodic Pulse Train

Determine the EFS for the periodic square wave shown as below.

Example 4.5 Exponential Fourier Series For a Periodic Pulse Train

Determine the EFS for the periodic square wave shown as below.

Example 4.10 Spectrum of half-wave rectified sinusoidal signal

Determine the EFS coefficients and graph the line spectrum for the half-wave periodic signal $\tilde{x}(t)$ defined by .

$$\tilde{x}(t) = \begin{cases} \sin(w_0 t), & 0 \le t \le T_0 / 2 \\ 0, & T_0 / 2 \le t < T_0 \end{cases} \text{ and } \tilde{x}(t + T_0) = \tilde{x}(t)$$

4.2.5 Existence of Fourier Series

Is it always possible to determine the Fourier series coefficients?

Dirichlet Condition

3F

- \Rightarrow Finite absolute value: $\int_0^{T_0} |\tilde{x}(t)| dt < \infty$
- \Leftrightarrow Finite number of discontinuities in $\tilde{x}(t)$
- ♦ Finite number of minima and maxima in one period

4.2.7 Properties of Fourier Series

Linearity:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jkw_0 t}$$
 and $\tilde{y}(t) = \sum_{k=-\infty}^{\infty} d_k e^{jkw_0 t}$

$$a_1 \tilde{x}(t) + a_2 \tilde{y}(t) = \sum_{k=-\infty}^{\infty} [a_1 c_k + a_2 d_k] e^{jkw_0 t}$$

Where a_1 and a_2 are any two constants

Time shifting:

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k e^{jkw_0 t}$$

$$\tilde{x}(t-\tau) = \sum_{k=-\infty}^{\infty} [c_k e^{-jkw_0 \tau}] e^{jkw_0 t}$$