ECE 351 Signals and Systems

Course Information

Instructor: Yadong Wang, Ph.D. Office: EB3067, Tel: (618)650-2524		
Textbook: Oktay Alkin, Signals and systems: A MATLAB integrated		
approach		
Software: MATLAB		
♦ Grading:	Homework:	10%
	Exam 1:	20%
	Exam 2:	20%
	Quizzes:	15%
	Project/Simulation:	10%
	Final Exam:	25%
Prerequisites: grade of C or better in ECE 211		

$Ele = 0.5^{\circ}$ 250 GR CR 200 WS 150 DS 100 NE 50 Meridional (km) UΚ -GC/A -50 BS -100 BD -150 RH -200 HR -250 -150 -100 -50 100 150 200 250 0 50 Zonal (km)

About Me

Education

Ph.D., Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma Dissertation Title: **The application of spectral analysis and artificial intelligence methods to weather radar**

M.S.E.E., Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma B.S.E.E., Electrical and Computer Engineering, Sichuan University, P. R. China

Professional Experience

2010-2016, Postdoctoral Research Associate/Research Scientist, National Severe Storms Laboratory, University of Oklahoma 2003-2010, Graduate Research Assistant, Electrical and Computer Engineering, University of Oklahoma 1999-2003, Radar Hardware Engineer,

Changfeng Science Technology Industry Group Corp. Beijing, China

Research Interests

Radar signal/imaging processing Radar engineering Communication Remote Sensing

Chapter 1. Signal Representation and Modeling Chapter Objectives

- ♦ The concept of *signa* and the *mathematic model*.
- ✓ Fundamental *signal types* and *signal operations*.
 Experiment with methods of simulating continuous- and discrete-time signals with MATLAB
- ♦ Learn various ways of classifying signals and discuss symmetry properties
- Explore characteristics of sinusoidal signals. Learn *phasor* representation of sinusoidal signals, and how *phasors* help with analysis
- Understand the *decomposition* of signals using *unit-impulse* functions of appropriate type
- ♦ Learn *energy* and *power* definitions

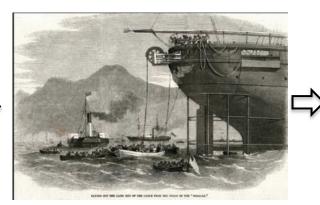
1.1 Introduction

Signals are part of our daily lives

1.1 Introduction

The history of communication is the history of human

490 BC.



Philippides, the Greek messenger

From the battlefield of Marathon towards Athens. About 26.2 miles.

"We have won!"

1900s

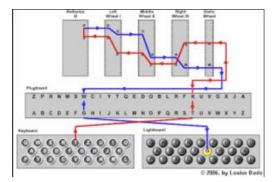
After 2000.

Across Atlantic Cable

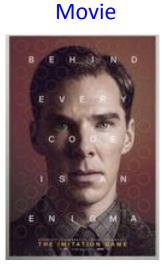
More than 2000 miles "Europe and America are united by telegraphic communication. Glory to God in highest, on earth peace, Goodwill to men" Wireless communication

"Hello world!"

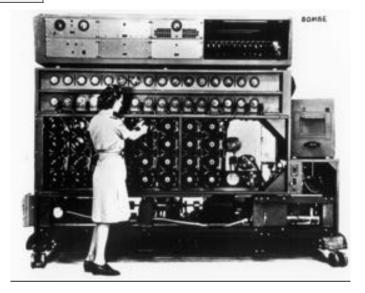
1.1. Introduction


Milestones in Communications

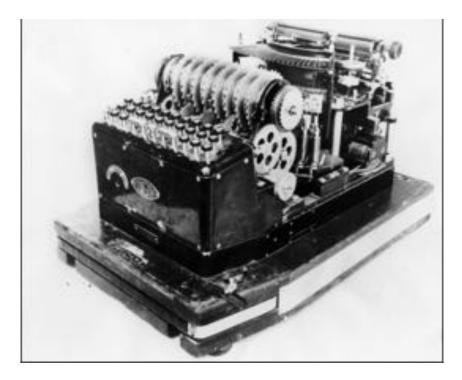
- 1837, Morse code used in telegraph
- **1864**, Maxwell formulated the electromagnetic (EM) theory
- 1887, Hertz demonstrated physical evidence of EM waves
- **1890's-1900's**, marconi & Popov, long-distance radio telegraph
 - -- Across Atlantic Ocean
 - -- From Cornwall to Canada
- 1875, Bell invented the telephone
- **1906**, radio broadcast
- **1918**, Armstrong invented superheterodyne radio receiver (FM in 1933)
- 1921, land-mobile communication
- 1947, microwave relay system
- **1957**, satellite communication began
- **1966,** fiber-optical communications
- 1981, analog cellular system
- **1988,** digital cellular system
- 2000, 3G network

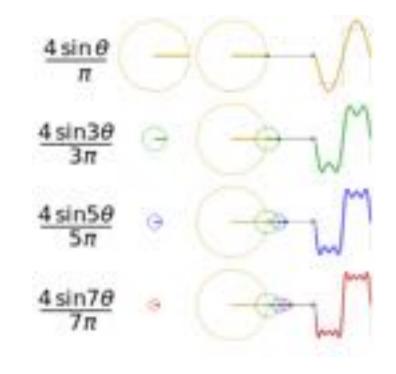

1.1. Introduction

Enigma Machine


5000 billions possibilities

Alan Turing




Real

1.1. Introduction

Enigma Machine

1.2 Mathematical modeling of Signals

The mathematical model for a signal is in the form of a formula, function, algorithm or a graph that approximately describe the time variations of the physical signal

Goals

- Understand the characteristics of the signals in terms of its behavior in time and in term of the frequencies it contains (signal analysis).
- Develop methods of creating signals with desired characteristics (signal synthesis)
- \diamond Understand how a system responds to a signal and why (system analysis)
- ♦ Develop methods of constructing a system that responds to a signal in some prescribed way (system synthesis)