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Abstract

As digital imaging and computing power increasingly develop, so too does the potential to use these technologies in

ophthalmology. Image processing, analysis and computer vision techniques are increasing in prominence in all fields of medical

science, and are especially pertinent to modern ophthalmology, as it is heavily dependent on visually oriented signs. The retinal

microvasculature is unique in that it is the only part of the human circulation that can be directly visualised non-invasively in vivo,

readily photographed and subject to digital image analysis. Exciting developments in image processing relevant to ophthalmology

over the past 15 years includes the progress being made towards developing automated diagnostic systems for conditions, such as

diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity. These diagnostic systems offer the potential

to be used in large-scale screening programs, with the potential for significant resource savings, as well as being free from observer

bias and fatigue. In addition, quantitative measurements of retinal vascular topography using digital image analysis from retinal

photography have been used as research tools to better understand the relationship between the retinal microvasculature and

cardiovascular disease. Furthermore, advances in electronic media transmission increase the relevance of using image processing in

‘teleophthalmology’ as an aid in clinical decision-making, with particular relevance to large rural-based communities.

In this review, we outline the principles upon which retinal digital image analysis is based. We discuss current techniques used to

automatically detect landmark features of the fundus, such as the optic disc, fovea and blood vessels. We review the use of image

analysis in the automated diagnosis of pathology (with particular reference to diabetic retinopathy). We also review its role in

defining and performing quantitative measurements of vascular topography, how these entities are based on ‘optimisation’

principles and how they have helped to describe the relationship between systemic cardiovascular disease and retinal vascular

changes. We also review the potential future use of fundal image analysis in telemedicine.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The retina is the only location where blood vessels can
be directly visualised non-invasively in vivo. Increasing
technology leading to the development of digital
imaging systems over the past two decades has
revolutionised fundal imaging. Whilst digital imaging
does not still have the resolution of conventional
photography, modern digital imaging systems offer very
high-resolution images that are sufficient for most
clinical scenarios (Facey et al., 2002; Fransen et al.,
2002; Hansen et al., 2004b; Klein et al., 2004a; van
Leeuwen et al., 2003). In addition, digital imaging has
the advantage of easier storage on media that do not
deteriorate in quality with time, can be transmitted over
short distances throughout a clinic or over large
distances via electronic transfer (allowing expert ‘‘at-a-
distance’’ opinion in large rural communities), can be
processed to improve image quality, and subjected to
image analysis to perform objective quantitative analysis
of fundal images and the potential for automated
diagnosis. In the research or screening setting, large
databases of fundal images may be automatically
classified and managed more readily than labour-
intensive observer-driven techniques. Automated diag-
nosis may also aid decision-making for optometrists.

In this review, we outline the principles upon which
retinal digital image analysis is based. We discuss
current techniques used to automatically detect land-
mark features of the fundus, such as the optic disc, fovea
and blood vessels. We review the use of image analysis
in the automated diagnosis of pathology (with particular
reference to diabetic retinopathy). We also review its
role in defining and performing quantitative measure-
ments of vascular topography, how these entities are
based on ‘optimisation’ principles and how they have
helped to describe the relationship between systemic
cardiovascular disease and retinal vascular changes. We
also review the potential future use of fundal image
analysis in telemedicine. Whilst this technology can be
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employed for other image acquisition modalities, such
as confocal scanning laser ophthalmoscopes (cSLO)
(Deckert et al., 2005), ultrasound (Schachar and
Kamangar, 2005) and optical coherence tomography
(Yanuzzi et al., 2004), in this article we concentrate
solely on image processing based on fundal colour
photography and fluorescein angiography.
2. Principle of digital image capture, processing and

analysis

Digital images are made up in such a way that makes
them accessible to simple and complex mathematical
manipulation. For black and white images (grey scale)
at any given locus of pixel, typically there is a
corresponding intensity on a range from 0 (black) to
255 (white) (28 for 8-bit images) {for 12-bit images, there
are 4096 grey levels (212), etc.}. Hence, the image is
composed of an array of pixels of varying intensity
across the image, the intensity corresponding to the level
of ‘‘greyness’’ at any particular point in the image. If we
were to express this image as an equation or function,
we could say that at any point of spatial co-ordinates
(x; y) the image has a set shade or intensity. When x; y
and the amplitude of intensity of points of an image are
all described as finite and discrete quantities, the image
is termed digital. A simple digital image may consist of
many such points, or pixels (derived from ‘picture
element’). Each pixel’s intensity for a monochrome grey-
scale image is known as its grey value. Thus, a grey-scale
digital image may be defined as a two-dimensional
function, f ðx; yÞ, where x and y are spatial co-ordinates
and f the amplitude at any pair of co-ordinates. Pixels
surrounding any given pixel constitute its ‘neighbour-
hood’. This mathematical means of describing an image
is the basis for allowing complex manipulations and
calculations that are termed image processing and
analysis.

Colour images use three channels (red, green and
blue—RGB) to produce an overall composite (Mc
Andrew, 2004). RGB images require a three-dimen-
sional array to convey the extra colour information. The
first plane in the extra, third dimension represents the
red pixel intensities, the second plane represents
the green pixel intensities and the third plane represents
the blue pixel intensities. Often contrast is greater when
the green channel alone is utilised in fundal image
analysis as this enhances contrast between the back-
ground and features, such as blood vessels and
haemorrhages (Hipwell et al., 2000). Many processing
and measurement tools, however, are written to operate
on grey-scale image and this may need to be extracted
from an RGB colour image.

Indexed images use matrices, or colour maps that
predefine a limited set of combinations of RGB values.
Then, instead of each point in the digital image defining
RGB levels individually, the pixel value simply refers to
the closest combination from the colour map, thus
saving computational memory for storage of the image.

A binary image is one containing only black and
white pixels. The image consists of a binary array,
typically of 0’s and 1’s. Images of any type may be
converted to this format for processing or analysis.
2.1. Image capture

The first stage in fundal digital image analysis is image
capture. This is normally acquired by a fundal camera
(mydriatic or non-mydriatic) that has a back-mounted
digital camera. The digital camera operates in the same
fashion as a conventional camera, but instead of having
film, digital cameras use an image sensor. Direct digital
sensors are either a charge-coupled device (CCD) or
complementary metal oxide semiconductor active pixel
sensor (CMOS-APS) (Gonzalez and Woods, 1992). The
CCD is an array of tiny light-sensitive diodes which
convert the light signal (photons) into electrical charge
(electrons). This then converts the analogue light image
into a digital pixellated (pixel ¼ picture element) image.
At each element (or pixel) in the array, the electrical
current proportional to the analogue light level is
converted into a digital level. The spatial resolution of
the image depends on the number of pixels that can be
created from the analogue image by the CCD array. The
CMOS-APSs employ active pixel technology and are
less expensive to manufacture. The APS technology
reduces by a factor of 100 the system power required to
process the image compared with the CCD. In addition,
the APS system eliminates the need for charge transfer
and may improve the reliability and lifespan of the
sensor (Fossum, 1993).
2.2. Image processing

Image-processing operations transform the grey
values of the pixels. There are three basic mechanisms
by which this is done. In its most simple form, the pixels
grey values are changed without any processing of
surrounding or ‘neighbourhood’ pixel values. Neigh-
bourhood processing incorporates the values of pixels in
a small neighbourhood around each pixel in question.
Finally, transforms are more complex and involve
manipulation of the entire image so that the pixels vales
are represented in a different but equivalent form. This
may allow for more efficient and powerful processing
before the image is reverted to its original mode of
representation.

The aims of processing of an image normally falls into
one of the three broad categories: enhancement (e.g.,
improved contrast), restoration (deblurring of an image)



ARTICLE IN PRESS
N. Patton et al. / Progress in Retinal and Eye Research 25 (2006) 99–127102
and segmentation (isolating particular areas of interest
within the image) (Gonzalez and Woods, 1992).

2.2.1. Image enhancement

One of the difficulties in image capture of the ocular
fundus is image quality which is affected by factors, such
as medial opacities, defocus or presence of artefact
(Kristinsson et al., 1997; Liesenfeld et al., 2000). Image
enhancement involves the development or improvement
of an image so that the result is more suitable for
subsequent use. Improvements may mean the image is
more acceptable for viewing, processing or analysis.
This might involve processes, such as improving
contrast or brightening an image.

The image histogram provides basic information
about the appearance of an image. It consists of a
graph indicating the number of times each grey level
occurs in the image. Across the horizontal axis of this
graph is the range of possible pixel intensity values, e.g.,
0–255. The vertical axis represents a measure of the
frequency of occurrence of each intensity value. In an
excessively dark or bright image, the grey level would
be clustered to the extremes of the histogram, but in a
well-contrasted image these levels would be well spread
out over much of the range. Histogram stretching
algorithms act to distribute grey levels more equally
across the range according to specific user defined
equations and thus produce an image with greater
contrast than the original. Histogram equalisation
works on a similar principle but is an entirely automatic
procedure that aims to make the histogram as uniform
as possible.

2.2.2. Image restoration

Processes in this class aim to reverse damage by
known causes. Algorithms such as deblurring or
removal of interference patterns belong to this category.
Noise occurs due to errors in pixel values caused by
external disturbance. There are many forms of noise,
such as salt-and-pepper noise, Gaussian noise or
periodic noise.

Salt-and-pepper noise causes the appearance of
randomly scattered white or black pixels over the image
but it is possible to reduce this by using filters in which
the mask evens out aberrations or ignores excessively
high or low values. Gaussian noise is caused by random
fluctuations in the signal. It can be reduced by using
several versions of that same image and averaging values
for each pixel. Periodic noise occurs if the imaging
equipment is subject to electronic repeating disturbance.
This can be reduced by transforming the image to a
different structure known as a Fourier transform, then
applying noise filters before transforming back to the
original image. Deblur functions rely on modelling of
the blurring process then using filters to remove the
known effects of blur.
2.2.3. Image segmentation

Segmentation involves dividing images into subsec-
tions that are of particular interest, such as defining
areas of an image that are appropriate to be subse-
quently analysed, or finding circles, lines or other shapes
of interest. Segmentation can stop when such objects of
interest have been isolated. Segmentation algorithms
for monochrome images are generally based on dis-
continuity of image intensities such as edges in an image,
or on similarities judged by predefined criteria (see
below).
2.2.3.1. Thresholding. Thresholding allows the separa-
tion of an image into separate components by turning it
into a binary image. This involves the image being
separated into white or black pixels on the basis of
whether their intensity value is greater or less than a
certain threshold level. The process of thresholding may
be particularly useful to remove unnecessary detail or
variations and highlight detail that is of interest. A
global threshold value may be chosen automatically or
on the basis of clear points in the image histogram that
would allow for efficient separation. More complex
intensity criteria may be used to allocate whether pixel
values become white or black. For some images,
adaptive or local thresholding is useful where different
thresholds are applied to different sections of the image,
e.g., the image has varying levels of background
illumination.
2.2.3.2. Edge detection. Edges contain some of the
most useful information in an image. They can be used,
e.g., to measure the size of objects or to recognise and
isolate objects. An edge in a digital image consists of an
observable difference in pixel values within a certain
area. Most edge detection algorithms assess this change
by finding the magnitude of the gradient of the pixel
intensity values. This can be done by the application of
specialised filters of varying complexity and utility. A
threshold can be applied to the resultant image to create
a binary image of the edges. Examples of edge detection
masks include Sobel (Gonzalez and Woods, 2002) and
Canny (1986) edge detection programs. The Sobel edge
detector uses a pair of 3� 3 convolution masks, one
estimating the gradient in the x-direction (columns) and
the other estimating the gradient in the y-direction
(rows). However, in a comparison of three automated
techniques of edge detection to identify the boundaries
and corresponding widths of retinal blood vessels, Sobel
was found to be the most inconsistent, possibly related
to the program identifying the central light reflex from
the blood vessel as an edge (Chapman et al., 2001). The
Canny edge detection program has been used in neural
networks to automatically localise retinal blood vessels
in fundal RGB images (Sinthanayothin et al., 1999).
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2.2.3.3. Filters. Neighbourhood processing extends
the power of processing algorithms by incorporating
values of adjacent pixels in calculations. A user defined
matrix, or mask is defined with enough elements to
cover not only a single pixel but also some of its adjacent
pixels. Each pixel covered by the elements of the mask is
subject to a corresponding function. The combination of
mask and function is called a filter. Thus, the result of
applying a mask to a particular location is that the final
resultant value is a function not only of the central
pixel’s values but also of its neighbouring pixel values.

2.2.3.4. Morphological processing. Mathematical mor-
phology in image processing is particularly suitable for
analysing shapes in images. The two main processes are
those of dilation and erosion. These processes involve a
special mechanism of combining two sets of pixels.
Usually, one set consists of the image being processed
and the other a smaller set of pixels known as a
structuring element or kernel. In dilation, every point in
the image is superimposed onto by the kernel, with its
surrounding pixels. The resultant effect of dilation is of
increasing the size of the original object. Erosion is an
inverse procedure in which an image is thinned through
subtraction via a structuring element or kernel. The
kernel is superimposed onto the original image and only
at locations when it fits entirely within its boundaries
will a resultant central pixel be accepted. The algorithms
of opening and closing are based upon these processes.
Opening consists of erosion followed by dilation, and
tends to smooth an image, breaking narrow joints and
removing thin protrusions. Closing consists of dilation
followed by erosion and also smoothes images, but by
fusing narrow breaks and gulfs and eliminating small
holes. Algorithms combining the above processes are
used to creating mechanisms of edge detection, noise
removal and background removal as well as for finding
specific shapes in images (see below).

2.3. Image registration

Image registration is a process of aligning two or
more images of the same scene. One image (the base
image) is compared to the other input images (Maintz
and Viergever, 1998). The aim of registration is to apply
spatial transformations to the input image to bring the
input image into alignment with the base image.
Commonly, the input images may be misaligned due
to different camera angles or different imaging mod-
alities. The details of the exact alignment algorithm are
calculated after the user identifies pairs of points that
should exactly correspond in the two images. A spatial
mapping is inferred from the positions of these control
points. Registration can be based on identified land-
marks (e.g., retinal vessel bifurcation points), on the
alignment of segmented binary structures (segmentation
based), or directly onto measures computed from the
image grey values (Maintz and Viergever, 1998). The
input image is transformed then to correspond with the
base image so that direct comparisons can be made.
Registration of images in this manner is commonly used
as a preliminary step in processing applications. Alter-
natively, two images taken at different time intervals
may need to be registered (temporal registration) using
an automated process in order for time-dependent
changes to be identified. This has been performed for
sequential fluorescein angiography (Spencer et al., 1996)
and colour fundal images. The available registration
methods are divided into intensity based (Matsopoulos
et al., 1999; Ritter et al., 1999) and feature based (Zana
and Klein, 1999). Intensity-based methods have the
drawback of poor performance under varying illumina-
tion, whilst feature-based methods rely heavily on
accurate and repeatable extraction of the features (Tsai
et al., 2004). Image mosaicing is the act of combining
two or more images and is used to combine images such
that no obstructive boundaries exist around overlapped
regions and to create a mosaic image that exhibits as
little distortion as possible from the original images, and
may be used to create wide-field retinal montages. It also
has applications in video frame capturing (Can et al.,
2000).
3. Automated localisation (segmentation) of retinal

landmarks

A potential use of fundal digital image analysis is the
ability to analyse a large database of fundal images in a
short period of time. The identification of fundal
landmark features such as the optic disc, fovea and the
retinal vessels as reference co-ordinates is a prerequisite
before systems can achieve more complex tasks identify-
ing pathological entities. Reliable techniques exist for
identification of these structures in retinal photographs.

3.1. Optic nerve head localisation

The location of the optic disc is important in retinal
image analysis, to locate anatomical components in
retinal images, for vessel tracking, as a reference length
for measuring distances in retinal images, and for
registering changes within the optic disc region due to
disease. The optic disc is usually the brightest compo-
nent on the fundus, and therefore a cluster of high
intensity pixels with a high grey-scale value will identify
the optic disc location (Chaudhuri et al., 1989a; Lee et
al., 1999). This works well, unless there are other
potential fundal features such as the presence of
exudates, which may mimic similar high grey-scale
values (Goldbaum et al., 1990). Techniques such
as principal component analysis (PCA) (a way of
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identifying patterns in data, and expressing the data in
such a way as to highlight their similarities and
differences—often used in face recognition and other
computer vision applications) can help differentiate the
true optic disc from other sources (Li and Chutatape,
2004). Li and Chutatape (2004) produced a training set
using the brightest pixels that were firstly clustered as
candidate optic disc regions. Principle component
analysis was then applied to project a new image to
the ‘disc space’. Then, the location of the optic disc
centre was found by calculating the minimum distance
between the original retinal image and its projection.
Other features that help differentiate the optic nerve are
the confluence of blood vessels at the optic disc, which
results in a large variance in intensity of adjacent pixels
(Akita and Kuga, 1982; Hoover and Goldbaum, 1998).
Sinthanayothin et al. (1999) correctly identified the
location of the optic disc employing the variance of
intensity between the optic disc and adjacent blood
vessels in 111 of 112 colour fundal images, giving both a
sensitivity and specificity of 99.1%. However, others
have found that this algorithm often fails for fundus
images with a large number of white lesions, light
artefacts or strongly visible choroidal vessels (Lowell et
al., 2004a). Others have exploited the Hough transform
(a general technique for identifying the locations and
orientations of certain types of shapes within a digital
image; Kalviainen et al., 1995) to locate the optic disc
(Kochner et al., 1998; Tamura et al., 1988; Yulong and
Dingru, 1990). However, Hough spaces tend to be
sensitive to the chosen image resolution (Hoover and
Goldbaum, 2003). Foracchia et al. (2004) recently report
on a new technique for locating the optic disc using a
geometrical parametric model (retinal vessels originating
from the optic disc and their path follows a similar
directional pattern (parabolic course) in all images) to
describe the typical direction of retinal vessels as they
converge on the optic disc. Hoover and Goldbaum
(2003) correctly identify optic disc location in 89%
of 81 images, 50 of which were diseased retinas using a
‘‘fuzzy convergence’’ algorithm (finds the strongest
vessel network convergence as the primary feature for
detection using blood vessel binary segmentation, the
disc being located at the point of vessel convergence.
Brightness of the optic disc was used as a secondary
feature). All of the healthy retinae (n ¼ 31) had
successful optic disc localisation, and 41 from the 50
diseased retinae.

Optic disc boundary identification has been used by
Mendels et al. (1999), and Osareh (2004) and Osareh et
al. (2002) report an accuracy of 90% (n ¼ 75) in locating
the optic disc boundary, using active contours (model-
based methods for localisation and tracking of image
structures) compared to the reference standard of a
clinical ophthalmologist. Lowell et al. (2004a) also
report identifying the optic disc in 89 of 90 randomly
chosen low-resolution diabetic fundal images using a
contour-model-based approach (using a parametric
approach, encoding a specific shape to fit the simple
global model of the optic disc, but allowing for
significant variability related to ‘‘distractors’’, such as
variation in blood vessel patterns).

3.2. Foveal localisation

The fovea can be detected exploiting the avascularity
of the fovea, thus having different grey levels at its
border (Ibanez and Simo, 1999). Sinthanayothin et al.
(1999) report a sensitivity and specificity for correct
identification of the fovea as 80.4% and 99.1%,
respectively, in 112 images, when compared with an
experienced ophthalmologist. The location of the fovea
was chosen as the position of maximum correlation
between a model template and the intensity image,
obtained from the intensity-hue-saturation transforma-
tion, provided it was appropriately placed temporal to
the optic disc and in the region of minimum intensity.
Foveal localisation was particularly affected if there was
poor centration of the fovea in the image. Goldbaum et
al. (1996) fixed the position of the fovea relative to the
optic disc. Li and Chutatape (2004) report a 100%
detection of the foveal region, using model-based
methods. They estimate the position of the fovea by
extracting the points on the main blood vessels by a
modified active model, and fitting a parabola curve with
the optic disc as the centre. The fovea is then located at 2
disc diameters (DDs) from the optic disc on the main
axis of the parabola.

3.3. Vascular segmentation

Retinal vascular segmentation techniques utilise the
contrast existing between the retinal blood vessel and
surrounding background, the cross-sectional grey-level
profile of a typical vessel conforms to a Gaussian shape,
the vasculature is piecewise linear and may be repre-
sented by a series of connected line segments and that
the vasculature originates from the same point (the optic
disc) and all vessels are connected (Heneghan et al.,
2002).

Four main techniques are used to segment the
vasculature form retinal images:

3.3.1. Matched filters

This usually employs a two-dimensional linear
‘‘structural element’’ (kernel) that has a Gaussian
cross-profile section, extruded or rotated into three
dimensions to identify the cross-profile of the blood
vessel, which typically has a Gaussian or a Gaussian
derivative profile (Chaudhuri et al., 1989b; Hoover
et al., 2000; Lowell et al., 2004b) (Fig. 1). The kernel is
rotated into many different orientations (usually eight
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Fig. 1. Three-dimensional image of an intensity profile from a retinal

vessel of ‘‘double-Gaussian’’ construct.
Fig. 2. Grey-scale image of a retinal vessel-tracking process.
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or 12) to fit into vessels of different configuration. The
image is then thresholded (an arbitrary chosen grey level
divides all features into a binary classification, depend-
ing on whether they have a greater or lesser intensity
level than the ‘brightness threshold’) to extract the vessel
silhouette from the background. This works reasonably
well on images of healthy retinae, but in diseased states
such as diabetic retinopathy, there are problems
associated with detecting very fine neovascularisation,
partly due to image resolution and also smaller vessels
are more prone to changes in background intensity and
there is a reduced contrast-to-noise ratio. To overcome
this, non-linear ‘‘tram-line’’ filters have been used,
utilising the contrast between a central line oriented
along the vessel and satellite tram-lines at either side
(Hunter et al., 2002). Also, using too long a structuring
element may have difficulty in fitting into highly
tortuous vessels. Matched filters do not operate in
isolation, but as part of an algorithmic chain, requiring
thresholding into a binary vessel/non-vessel image (Teng
et al., 2002).

3.3.2. Vessel tracking

Another technique for vessel segmentation include
‘‘vessel-tracking’’ (Kochner et al., 1998; Tamura et al.,
1988), whereby vessel centre locations are automatically
sought over each cross-section of a vessel along the
vessels longitudinal axis, having been given a starting
and end point (Fig. 2). They tend to work on single
retinal vessels and require starting and ending points to
be identified by the user. The selection of vascular points
is normally accomplished by matched filters (Teng et al.,
2002). In addition, vessel-tracking techniques may be
confused by vessel crossings and bifurcations (Frame
et al., 1996; Tamura et al., 1988). However, vessel
tracking can provide very accurate measurements of
vessel widths and tortuosity.
3.3.3. Neural networks

Others have proposed the use of neural networks to
segment retinal vasculature (Akita and Kuga, 1982).
Artificial neural networks employ mathematical
‘‘weights’’ to decide the probability of input data
belonging to a particular output. This ‘‘weighting’’
system can be adjusted by training the network with
data of known output, often with a ‘‘feedback’’
mechanism allowing retraining. Unlike conventional
computer programs that employ serial processing,
neural networks use parallel processing. Neural net-
works have been used in association with edge detection
programs (Sinthanayothin et al., 1999) having initially
pre-processed the image with PCA to reduce back-
ground noise. Sinthanayothin et al. (1999) report a
success rate (as compared with an experienced ophthal-
mologist manually mapping out the location of the
blood vessels in a random sample of 73 20� 20 pixel
window and requiring an exact match between pixels in
both images) of 99.56% for training data and 96.88%
for validation data, respectively, with an overall
sensitivity and specificity of 83.3% (standard deviation
16.8%) and 91% (standard deviation 5.2%), respec-
tively.

3.3.4. Morphological processing

Morphological image processing exploits features of
the vasculature shape that are known a priori, such as it
being piecewise linear and connected. Algorithms that
extract linear shapes can be very useful for vessel
segmentation. Structuring elements of a certain intensity
can be added (dilation) or subtracted (erosion) to the
underlying image. Opening (erosion followed by dilata-
tion) with a structuring element of a certain shape can
separate objects in an image, by preserving image
structures that can contain the structural element and



ARTICLE IN PRESS
N. Patton et al. / Progress in Retinal and Eye Research 25 (2006) 99–127106
removing those that cannot (Heneghan et al., 2002).
Closing (dilatation followed by erosion) can be used to
‘fill-in’ small holes within an image. Gregson et al.
(1995) utilise morphological closing to help identify
veins in the automated grading of venous beading by
filling in any ‘‘holes’’ in the silhouette of the vein created
during the processing procedure.
4. Automated detection of pathology using retinal digital

image analysis

Automated diagnosis of retinal fundal images using
digital image analysis offers huge potential benefits. In a
research setting, it offers the potential to examine a large
number of images with time and cost savings and offer
more objective measurements than current observer-
driven techniques. Advantages in a clinical context
include the potential to perform large numbers of
automated screening for conditions such as diabetic
retinopathy, and hence to reduce the workload required
from manual trained graders. Image management
systems such as STARE offer an approach that is
designed to measure key aspects of fundal images,
diagnose images, compare images and search for images
similar in content, using statistical neural network
learning modules (Goldbaum et al., 1989; Hoover et
al., 2000). The greatest emphasis in automated diagnosis
has unsurprisingly been given to the detection of
diabetic retinopathy.

4.1. Automated detection of diabetic retinopathy

(ADDR) using retinal digital image analysis

Diabetic retinopathy is the leading cause of blindness
in people of working age in the developed world,
affecting more than 2% of the UK population (Evans et
al., 1996). In England and Wales, approximately 1000
diabetic patients are registered as blind or partially
sighted each year (Watkins, 2003) and blindness due to
diabetes costs the US Government and general public
$500 million annually (Klein and Klein, 1995). A WHO
collaborative study projected that the global diabetic
burden is expected to increase to 221 million people by
2010 (Amos et al., 1997). However, treatment can
prevent visual loss from sight-threatening retinopathy if
detected early (Diabetic Retinopathy Study, 1978). In
order to address the impact of diabetes, screening
schemes are currently being put into place around the
world, many based on digital fundal photography. In
England and Wales, a national screening program,
based on digital photography, has been recommended
by the National Screening Committee. However, there
are concerns regarding the cost of any screening scheme
used for detecting sight-threatening diabetic retinopathy
in the population. Whilst screening schemes could
reduce the risk of blindness to less than half compared
with unscreened controls and reduce the economic
burden of blindness, significant resources are required
to put these screening schemes into place (Mason, 2003).
One of the greatest sources of expenditure in setting up
any diabetic retinopathy screening program is the cost
of financing trained manual graders. As a means to
reduce this cost, the potential ability of ADDR to
reduce this workload by using computerised algorithms
on digitalised retinal images to define an image as
showing presence or absence of diabetic retinopathy has
been extensively investigated. If automated detection
programs are able to exclude a large number of those
patients who have no diabetic retinopathy, it will reduce
the workload of the trained graders and thus reduce
costs. Other benefits of an automated detection program
include improved repeatability and immunity from
fatigue. Great interest over the past 10 years has centred
on developing algorithms that detect diabetic retino-
pathy with sufficient sensitivity to be able to implement
them into screening programs as an adjunct to current
strategies. Current technology offers no potential for a
completely independent automated diabetic detection
program, as systems that have been tested show
unacceptable specificity. Some of the reasons include a
high number of false-positives confusing drusen with
exudates (Usher et al., 2003) and potential problems
with different pigmentation form different ethnic races
(Usher et al., 2003). However, sensitivity is more
important than specificity, to err on the side of caution
and not miss a case of sight-threatening retinopathy.
Systems have concentrated on highly sensitive systems
to be used in conjunction with manual graders. ADDR
systems have concentrated largely on the automated
detection of microaneurysms, haemorrhages and exu-
dates. Detection of clinically significant macular oedema
has proved more problematic (Olson et al., 2003) and no
system to our knowledge has explored the automatic
identification of diabetic retinal neovascularisation form
colour images.

4.1.1. Detection of microaneurysms/haemorrhages

Some of the first automated techniques utilised
fluorescein angiography and relied on global (involving
the whole image) image-processing procedures to seg-
ment microaneurysms from the background fundus
image by thresholding at a grey level which was a
compromise between that which was low enough to
detect all the microaneurysms and that which did not
detect any other features (Lay et al., 1983; Spencer et al.,
1992). Binary morphological processing and structuring
elements in the thresholded images allows further
discrimination between microaneurysms and other
features, such as small vessels sections. Fluorescein
angiography has also been utilised to provide measure-
ments of overall fluorescein intensity variation over the
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fluorescein transit (Hipwell et al., 1998), and the use of
parameters such as time to maximum intensity of
fluorescein can produce quantifiable values that relate
to the state of health of the retinal circulation, and hence
offer a potential diagnostic index of retinopathy
severity. However, the drawbacks related to fluorescein
angiography as an intervention prohibit its use in large-
scale screening analysis. Image processing of colour
fundal photographs is more challenging, due to the
different ‘distractors’ within the image that may be
confused with diabetic lesions, e.g., small vessels,
choroidal vessels and reflection artefacts.

Spencer et al. (1996) employed a morphological
transformation to segment microaneurysms from fluor-
escein angiograms. After ‘opening’ (erosion followed by
a dilatation) the shade-corrected image with an 11-pixel
linear structural element in eight rotational orientations
that when combined included all of the vessel sections,
and excluded all the ‘circular’ microaneurysms, this
opened image was extracted from the original shade-
corrected image (a ‘top-hat transformation’) producing
an image that only contains microaneurysms. A two-
dimensional Gaussian matched filter model of a micro-
aneurysm was then applied, before thresholding resulted
in a binary image containing candidate microaneurysms.
A region-growing algorithm (based on choosing a
single-pixel ‘seed’ with the highest grey level as the
origin of each ‘candidate’ microaneurysm and assessing
neighbouring pixels’ grey levels against this to determine
inclusion or exclusion of the pixel into the growing
object) delineated each marked object and subsequent
analysis of the size, shape and energy characteristics of
each ‘candidate’ resulted in the final segmentation of
microaneurysms. Based on four 1000 � 800 printed images
containing microaneurysms, they report good agree-
ment with five clinicians’ opinions, with 82% sensitivity
and 86% specificity. However, this was at the cost of
approximately 100 false positives per image.

Cree et al. (1997) developed Spencer et al.’s technique
but redesigned the region-growing and classification
algorithms and included a process to remove the need
for operator intervention in selecting regions-of-interest
(ROI) (found by locating the fovea and centring a
512� 512 ROI at this point) within which microaneur-
ysms are counted, and to include an automated process
for image registration to allow sequential comparisons
of microaneurysm turnover, based on a cross-correla-
tion algorithm (Cideciyan et al., 1992). However, the
authors state that the automated registration process for
sequential studies often failed for poor-quality images,
and those with prior laser photocoagulation. Automated
selection of the macular ROI was reported as being
accurate in 93 of 95 images. The classifier was trained on
a set of 68 fluorescein images to detect features that may
be helpful to discriminate microaneurysms and other
microvascular abnormalities, and was further tested in
20 angiogram images (all individual patients with
varying degrees of retinopathy, containing 297 true
microaneurysms as referenced by the joint agreement of
an ophthalmologist and a medial physicist) and achieved
a sensitivity of 82%, with 2.0 false positives per image.
Against five clinicians looking at 20 digital angiograms
on a computer screen, sensitivity was 82% with 5.7 false
positives per image, a great improvement over Spencer
et al. (1996).

Further development by Hipwell et al. (2000) led to a
microaneurysm detection program on digitalised 501
digital red-free images. The images were initially
processed by the same technique described by Spencer
et al. (1996), viz. shade correcting the image, followed by
removal of vessels and other distractors by the top-hat
transformation, and use of the Gaussian filter to retain
candidate microaneurysms for subsequent classification.
The classification algorithm was based on 13 different
calculations (based on a training set of 102 images of
variable degrees of retinopathy) including shape, in-
tensity, circularity, perimeter length and length ratio,
and if all criteria were met, the area under scrutiny is
nominated as a microaneurysm. Based on a total of 3783
images from 589 patients on 977 visits (graded for
presence/absence of microaneurysms and/or haemor-
rhages against the reference standard of an experienced
clinical research fellow according to the EURODIAB
HMA protocol; Aldington et al., 1995) produced a
sensitivity of 81%, with 93% specificity. However, this
was when EURODIAB HMA grade 2 images (ques-
tionable HMA present) were excluded. When based on
individual patients (two images per eye), sensitivity of
the computer program increased to 85%, while specifi-
city reduced to 76%. Whilst this protocol for diabetic
screening requires two 501 images per eye, and hence
increases the sensitivity of the screening process, it
decreases the specificity as well as having cost implica-
tions for widespread screening programs. However, the
authors point out that 15% of the patients only had
retinopathy identified on the nasal image, and hence
would have been missed if a single macular field only
had been used.

Goatman et al. (2003) have developed an ADDR
program to detect microaneurysms on fluorescein
angiography, with the ability to follow-up temporal
changes in microaneurysm turnover. Using the same
microaneurysm detection algorithm on fluorescein
images and image registration as Cree et al. (1997), the
turnover of microaneurysms (static, new or regressed)
was compared with a reference standard of an ophthal-
mologist experienced in identifying microaneurysms and
grading of retinopathy in angiographic images. Com-
pared with manual measurements of nine manual
graders, the automated system was fast and reliable
with similar sensitivity and specificity to manual graders.
It also worked with red-free images.
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Ege et al. (2000) detected microaneurysms and
haemorrhages with a sensitivity of 69% and 83%,
respectively (based on 30 images, 14 of which had
retinopathy and 16 were no-retinopathy), using a
Mahalanobis classifier (a statistical measure of similarity
of an object based on ‘nearest-neighbour’ classification,
often used in pattern recognition), after employing a
training set of 30 images (15 with and 15 without
retinopathy). Reference standard was an experienced
clinical ophthalmologist.

Lee et al. (2001) employed colour fundus photographs
and image processing (image enhancement, noise
removal and image normalisation) in conjunction with
pattern recognition to test for particular features of
early diabetic retinopathy. In comparison with two
expert human graders, they report sensitivity of 77%
and specificity of 94% (when compared with a general
ophthalmologist) and 87% and 98%, respectively (when
compared with a grader from the University of
Wisconsin Fundus Photograph Reading Center), for
haemorrhages/microaneurysms from 428 images. How-
ever, no details regarding the nature of the processing or
pattern recognition were provided.

Sinthanayothin et al. (2002) employed a recursive
region-growing technique (works by localising similar
pixels within a certain boundary by comparison of their
respective intensities) and adaptive intensity threshold-
ing in conjunction with a ‘moat operator’ (creates a
trough around lesions, which aids segmentation of the
image to enhance edge detection). After pre-processing
and segmentation of major fundal landmarks, detection
of diabetic features was performed. To detect micro-
aneurysms and haemorrhages, they utilised a Moat
Operator (creates a trough around lesions, which aids
segmentation of the image) to enhance edge detection
and then used the recursive region-growing segmenta-
tion algorithm, using neural networks to extract the
similar retinal blood vessels. For a total of 30 images (14
of which contained haemorrhages/microaneurysms),
they report a sensitivity and specificity for haemor-
rhage/microaneurysm detection as 77.5% and 88.7%,
respectively (clinical ophthalmologist as the reference
standard).

Gardner et al. (1996) employed a back propagation
neural network to detect diabetic retinopathy features.
Training a neural network refers to adjusting the
weights in response to incorrect results. The degree to
which a connection has contributed to a particular error
determines the degree to which the weight associated
with the connection will be adjusted. This weight update
method, known as the delta rule, is the basis of back
propagation. Initial training was performed on 147
diabetic and 32 normal images, analysing the green
channel from 601 colour images, and dividing images
into 20� 20 pixel or 30� 30 pixel windows, which were
each individually graded manually by a trained observer
(normal without vessel, normal vessel, exudate and
haemorrhage/microaneurysm). This information was
used to teach the neural network, prior to employing a
testing set. They report detection rates for haemorrhages
as 73.8% for both sensitivity and specificity, compared
with the reference standard of a clinical ophthalmolo-
gist, based upon 200 diabetic and 101 normal images.
When classifying images into normal, diabetic requiring
referral and diabetic not requiring referral, based on the
reference standard of the clinical ophthalmologist, they
report a sensitivity of 88.4% and a specificity of 83.5%.
Increasing the sensitivity to 99% results in a fall of
specificity to 69%. A drawback of the neural network
approach is the length of time that it takes to ‘teach’ the
network form the training data. In this study, it required
79 h to train the haemorrhage/microaneurysm protocol,
although this is based on a 60 MHz computer processor,
which would now be obsolete.

Usher et al. (2003) also employed an artificial neural
network, based on a single 451 macular centred colour
image. After pre-processing and segmentation of normal
structures, haemorrhages/microaneurysms were ex-
tracted using recursive region growing and adaptive
intensity thresholding in conjunction with a ‘moat
operator’ similarly to Sinthanayothin et al. (2002).
Training was performed on 500 patients before analysis
of performance in comparison with a trained clinical
diabetologist (audited by a consultant ophthalmologist)
in 773 patients. On a per patient basis, sensitivity for
detection of any exudates and/or haemorrhages/micro-
aneurysms was 95.1% (95% confidence interval (CI)
92.3 to 97.7%) and a specificity of 46.3% (95% CI 41.6
to 51%). For detection of diabetic retinopathy, max-
imum sensitivity and specificity was 70.8% and 78.9%,
respectively. However, 70 of 773 images were ungrad-
able and a significant number of false positives were
related to drusen. If the system was implemented at
94.8% sensitivity and 52.8% specificity, the authors
conclude that the workload for manual trained graders
in screening for diabetic retinopathy in a population
could be reduced by a third and the number of patients
examined without diabetic retinopathy reduced by a half
by utilising this automated method in conjunction with
established diabetic screening procedures, with consid-
erable cost benefits.

4.1.2. Detection of retinal exudates and cotton wool spots

Important objects within fundal images that act as
distractors in the identification of retinal exudates
include the optic disc, drusen, light artefacts, choroidal
vessels and laser photocoagulation scars.

Sinthanayothin et al. (2002) identified exudates in
colour images based on the same recursive region-
growing technique described above to define an ‘‘exu-
date’’ and ‘‘non-exudate’’ image. After thresholding to
produce a binary image, the regions containing the
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exudates were overlaid onto the original image. They
report a sensitivity and specificity (with reference to a
clinical ophthalmologist grading images manually) of
88.5% and 99.7%, respectively, for 30 images (21 of
which contained exudates).

Employing the neural network as before, Gardner
et al. (1996) report a sensitivity of 93.1%. Osareh et al.
(2003) also employ neural networks to locate exudates.
After pre-processing of images, the image was segmen-
ted depending on colour using ‘Fuzzy C-means cluster-
ing’ (Bezdek et al., 1999). For object classification, 18
different features that discriminate exudates were then
inputted to a three layer neural network. They report
detection (n ¼ 67) with 93.0% sensitivity and 94.1%
specificity in terms of lesion based classification (em-
ploying a back propagation neural network), and 95.0%
sensitivity and 88.9% specificity for the identification of
patients with evidence of retinopathy. The whole
processing time using a 700 MHz computer processor
was only 11 min per image.

Ege et al. (2000) detected exudates and cotton wool
spots with sensitivity of 99% and 80%, respectively. In
comparison with a general clinical ophthalmologist, Lee
et al. (2001) report sensitivities of 96% and 80% and
specificities of 93% and 93% for hard exudates and
cotton wool spots, respectively (when compared with a
general ophthalmologist).

It must be borne in mind that the above studies may
not be directly applicable to the clinical situation as the
reference standard was a clinician examining an image,
rather than using indirect slit-lamp biomicroscopy.
However, this may more appropriately reflect the
screening scenario. In contrast, Olson et al. (2003)
compared automated digital analysis with direct slit-
lamp biomicroscopy by ophthalmologists as the refer-
ence standard. In 586 patients, they report a sensitivity
of 83% (95% CIs 77–89%) and a specificity of 85%
(82–88%) for diagnosis based on detection of haemor-
rhages/microaneurysms. Technical failure rates were
lower with digital imaging, compared with conventional
photography and automated digital imaging had the
same sensitivity as manual digital grading, and was even
superior to screening by optometrist examination. This
is very encouraging for the use of automated digital
imaging as a screening tool for diabetic retinopathy, as
this is the first study to find it of superior sensitivity to
optometric examination. As expected however, specifi-
city was lower for automated digital imaging than other
modalities (71% vs. 89%, 79% and 82% for manual
examination using colour slides, manual examination
using digital images and optometric examination,
respectively).

4.1.3. Detection of clinically significant macular oedema

Previous studies quantifying macular oedema have
employed fluorescein angiography, comparing early
transit (15–30 s) with late transit (250–300 s) images,
and using a threshold gradient below which were
considered representative of leakage (Philips et al.,
1991). Whilst high-resolution digital non-simultaneous
stereoscopic fundal photographs have been successfully
employed to detect clinically significant macular oede-
ma, this was based on manual grader examination using
liquid crystal shutter goggles (Rudnisky et al., 2002).
Olson et al. (2003) are the first to report the use of
ADDR for clinically significant macular oedema from
fundal photographs using an automated system. Based
on findings of haemorrhages/microaneurysms or exu-
dates within 1 DD of the fovea, the automated analysis
detected 16 of 21 cases (76% sensitivity, 85% specificity)
of macular oedema (with reference to slit-lamp biomi-
croscopy by an ophthalmologist). Whilst this is en-
couraging (the automated system was more markedly
more sensitive than optometric examination), auto-
mated systems are currently limited in their detection
of macular oedema, due to the need for stereoscopic
macular examination to make this diagnosis.

As well as identification of sight-threatening diabetic
retinopathy, computerised digital fundal analysis has the
potential to quantitatively analyse diabetic fundi in
terms of features, such as haemorrhages and exudates.
Evidence suggests quantitative analysis may help
identify patients with early diabetic retinopathy that
may later develop vision-threatening maculopathy
(Hove et al., 2004).

4.1.4. Other issues concerning ADDR

One of the issues arising from the use of digital images
for diabetic retinopathy screening is the time and space
involved in capture and storage of the files. Currently,
the use of image compression using utilities such as Joint
Photographic Experts Group (JPEG) have not been
recommended, although there is some evidence that
while large file compression significantly reduces the
ability of automated detection programs, a compression
ratio of 1:12 or 1:20 would produce little reduction in
sensitivity (Basu et al., 2003). Another consideration for
diabetic screening is the use of routine mydriasis.
Hansen et al. (2004a) address the impact of pharmaco-
logically dilated pupils on ADDR. They report a change
in sensitivity before and after pupil dilatation of 90%
and 97%, respectively, for detection of ‘red lesions’
(haemorrhages/microaneurysms) and specificity before
and after pupil dilatation was reported as 86% and
75%, respectively (n ¼ 165 eyes of 83 patients). The use
of routine mydriasis for diabetic screening is controver-
sial. Currently, the National Screening Committee in
England and Wales have recommended routine my-
driasis for all screened patients, whereas the Health
Technology Assessment Board for Scotland (Facey
et al., 2002) only recommend mydriasis under certain
defined circumstances.
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No current ADDR systems can identify neovascular-
isation. Whilst in the context of screening to identify
presence/absence of retinopathy in conjunction with
manual assessment, this may not be important, but if
ADDR systems are ever going to have the potential to
identify and classify diabetic retinopathy, this will need
to be addressed. Fractal geometrical analysis may hold
more promise in this context than conventional vessel
identification (Daxer, 1993a, b).

Whilst the detection of sight-threatening diabetic
retinopathy has received the most attention with respect
to automated digital image analysis, other pathologies
offer potential to use this tool as well, including
morphological evaluations of the optic nerve in glauco-
ma (Corona et al., 2002; Wolfs et al., 1999) and the
macular region in age-related macular degeneration
(Barthes et al., 2001; Shin et al., 1999; Smith et al., 2003,
2005a, b; Soliz et al., 2000) and retinopathy of pre-
maturity (ROP) (Heneghan et al., 2002; Swanson et al.,
2003). Table 1 summarises sensitivities and specificities
of selected studies of ADDR.
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5. Quantitative measurements from Fundal images

An important role of retinal digital image analysis is
the ability to perform quantitative objective measure-
ments from retinal colour photographs. However, the
effect of image magnification resultant from fundal
photography has to be overcome, either incorporating
an adjusted measurement to take the magnification into
account, or to use dimensionless measurements so that
results between patients can be compared.
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5.1. Magnification effect of fundal photography

Magnification is defined as the image height divided
by the actual object height. For images that are close to
the ocular optical axis, the ‘‘actual’’ retinal size (t) is
related to the image size (s) by the formula

t ¼ pqs,

where (p) is a camera factor and (q) an ocular factor.
Therefore, both (a) camera factors and (b) ocular

factors will have a bearing on the degree of magnifica-
tion obtained from fundal photography. Other factors
that may need to be taken into consideration include
the degree of eccentricity of the measured object
from the optical axis (Bennett et al., 1994; Holden and
Fitzke, 1988) and camera–eye distance (Arnold et al.,
1993; Behrendt and Doyle, 1965; Bengtsson and
Krakau, 1977, 1992; Lotmar, 1984; Pach et al.,
1989). The following discussion of camera and ocular
magnification factors are based on the Gullstrand
schematic eye.
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5.1.1. Camera factors

The magnification effect of the camera relates the
angle emergent from the first principal point of
Gullstrand’s schematic eye to the image size (s) of the
retinal feature, expressed as a quotient (Garway-Heath
et al., 1998). For any particular fundal camera, this ratio
will be a constant, and therefore if attempting to make
between-patient comparisons of exact measurements
from fundal photographs correcting for magnification,
the camera constant of each camera used needs to be
known.

5.1.2. Ocular factors

Ocular magnification is solely related to the vergence
of the internal axis of the eye (Bengtsson and Krakau,
1977) (Fig. 3). Thus, ocular magnification (q) is directly
proportional to the distance between the second
principal point and the fovea. Several strategies exist
to calculate q from ocular biometric factors. The most
accurate technique is to use ray tracing to calculate q,
knowing the axial length of the eye, the anterior and
posterior radii of curvature of both the cornea and the
lens, the asphericity of these curvatures, corneal and
lenticular thickness, anterior chamber depth, the refrac-
tive indices of the all ocular elements involved in light
transmission, and the eccentricity of the retinal feature
being measured (Garway-Heath et al., 1998). Because of
the impracticality of gathering all of the above
information, summarising formulae that make certain
assumptions of the eye can be used to obtain an accurate
estimate of the ocular effect of magnification. Techni-
ques used include those based solely on spectacle
refraction (Bengtsson and Krakau, 1992), ametropia
Fig. 3. Schematic diagram of internal eye vergence related to image

magnification from retinal photography. (Reproduced and adapted

from Garway-Heath et al., 1998 with permission from BMJ Publishing

Group.).
and keratometry (Bengtsson and Krakau, 1992; Litt-
man, 1982), axial length only (Bengtsson and Krakau,
1992; Bennett et al., 1994), axial length and ametropia
(Littman, 1988; Wilms, 1986), and those utilising all of
axial length, anterior chamber depth, lens thickness,
keratometry and ametropia (Bennett et al., 1994).
Garway-Heath et al. (1998) found the abbreviated axial
length method employed by Bennett et al. (1994) differs
little from the more detailed calculations using kerato-
metry, ametropia, anterior chamber depth and lens
thickness. They found that Littman’s (1982) technique
based on keratometry and ametropia to be the least
accurate.

5.2. Dimensionless measures of retinal topography

Whilst all the above techniques make assumptions
about the optics of the eye, they serve as reasonable
estimates for calculating true retinal features from
retinal photographic images. However, in studies
collecting large numbers of patients, it may be difficult
to acquire such information. Hence, studies have sought
dimensionless measures, thus nullifying any magnifica-
tion effect and allowing measurements between subjects
to be compared. Such dimensionless entities that have
been used include the arteriovenous ratio (AVR),
junctional exponents, angles at vessel bifurcations,
measures of vascular tortuosity, length:diameter ratios
and fractal dimensions.

5.2.1. Measuring retinal vessel widths

Attempts at quantifying retinal arteriolar calibres
were first considered by Wagener et al. (1947). The
introduction of retinal photography in the 1960s
allowed semi-objective methods of performing measure-
ments on retinal vasculature using enlarged projected
images (micrometric methods) (Arzabe et al., 1990;
Bracher et al., 1979; Burgess, 1967; Cunha-Vaz and
Lima, 1978; Hodge et al., 1969; Hubbard et al., 1992;
Parr and Spears, 1974a, b). The introduction of digital
image analysis in the mid-1980s provided more objective
measurements of retinal vascular widths (Brinchmann-
Hansen, 1986; Delori et al., 1988; Eaton and Hatchell,
1988; Gao et al., 2000; Newsom et al., 1992; Penn and
Gay, 1992; Rassam et al., 1994; Stromland et al., 1995;
Wu et al., 1995). Digitalised image analysis techniques
are more reliable than previous micrometric techniques
(Delori et al., 1988; Newsom et al., 1992; Sherry et al.,
2002). Densitometric techniques employ intensity pro-
files of a grey-scale image of the fundus (microdensito-
metry). The location of each pixel can be identified with
spatial co-ordinates and each has a defined intensity,
known as its grey value. An intensity profile of a line
crossing perpendicular to the blood vessel will tend to
produce a distinct Gaussian distribution curve against
the background intensity of the surrounding retina. The
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Gaussian (or double-Gaussian) model can then be
analysed using image processing, and an estimate of
the width of the blood vessel can be obtained.

The single Gaussian model is given by the equation

f ðxÞ ¼ a1e�ððx�a2Þ=a3Þ
2

þ a4,

where a1 is the amplitude of the peak of the profile, a2

the position of the peak, a3 a specific parameter of
Gaussian function that controls the width of profile and
a4 the background retinal intensity.

The most common technique for acquiring the vessel
width is to estimate the width of the vessel at half the
height of the peak of the intensity profile of the
Gaussian curve (half-height method). This strategy
minimises any effect of defocusing at image acquisition
(Brinchmann-Hansen, 1986), which may be caused by
medial opacities. Poor-quality captured images can be
enhanced using grey-level transformation functions
(e.g., linear contrast stretch, histogram equalisation or
contrast-limited adaptive histogram equalisation; Gon-
zalez and Woods, 2002) to improve the contrast of the
retinal vessels. Other potential problems with retinal
vessel width measurements include width variation due
to the cardiac cycle (Chen et al., 1994; Dumskyj et al.,
1996; Knudtson et al., 2004), degree of systemic
autonomic nerve stimulation (Baer and Hill, 1990;
Lanigan et al., 1988) and degree of fundus pigmentation
(Hubbard et al., 1992). Because retinal arterioles are
small (approximately 50–200 mm in width), very high-
resolution digital images must be obtained to perform
accurate measurements from vessels that may be as
small as 15–20 pixels in width. Also, measurements from
retinal photography are based on the width of the blood
column, rather than the actual blood vessel width, as it
does not take into account the plasma component of
blood in the peripheral vessels.

Other techniques of automated vessel width measure-
ment have included the use of edge detection masks
(Gonzalez and Woods, 1992) and sliding linear regres-
sion filters (Chapman et al., 2001; Gang et al., 2002).
Rassam et al. (1994) have used ‘‘kick-points’’ on the
image histogram which, although appearing to be more
accurate in determining vessel width for good-quality
images, are more prone to errors due to defocus.

Chapman et al. (2001) compared three different
automated strategies to measure retinal vessel widths
(Gaussian intensity profiles, edge detector, sliding
regression linear filter) with manual measurement in
red-free images. They found the most reliable of the
three techniques was the sliding linear regression filter.
The edge detector program frequently misinterpreted
the central bright light reflex from the arteriole as the
vessel edge.

Whilst performing individual retinal vessel measure-
ments can provide some information regarding an
individual’s retinal vasculature, it would be more
advantageous to obtain a measure of overall retinal
arteriolar and venular calibre. The most commonly
performed dimensionless measurement that has been
used as a measure of the width of the retinal vessels is
known as the arteriolar–venular ratio (AVR) (Hubbard
et al., 1992, 1999; Stanton et al., 1995a).

5.2.2. The arteriovenous ratio

The AVR was first suggested as a good parameter to
investigate retinal vascular geometry by Stokoe and
Turner (1966). It was developed as a general measure of
the ratio between the average diameters of the arterioles
with respect to the venules. It is comprised of two
components, the central retinal artery equivalent
(CRAE) and the central retinal vein equivalent (CRVE),
expressed as a quotient. The CRAE was first devised by
Parr and Spears (1974a, b), who developed an estima-
tion from arteriolar trunk and branch vessels around a
predefined zone concentric with the optic disc. Each
individual vessel was measured, and paired vessels were
combined to estimate the trunk vessels, and then paired
trunk vessels were combined, and this iterative process
was continued until all vessels had been combined into a
summary measure of the mean CRAE. The formula that
Parr et al. devised to calculate the calibre of the trunk
vessel from the two branch vessels is detailed below:

For arterioles

W c ¼ vð0:87W 2
a þ 1:01W 2

b � 0:22W aW b � 10:76Þ,

where Wc is the calibre of trunk arteriole, Wa the calibre
of the smaller branch arteriole and Wb the calibre of the
larger branch arteriole.

The Parr approach to calculate the CRAE was
dependent on carefully tracing out the individual paired
vessels, and was labour intensive and time consuming.

Hubbard et al. (1992) developed a similar measure to
calculate the CRVE, again using a selection of young
normotensive individuals and calculating a formula that
would best describe the relationship between the trunk
retinal venule and its branches.

For venules

W c ¼ vð0:72W 2
a þ 0:91W 2

b þ 450:05Þ,

where Wc is the calibre of trunk venule, Wa the calibre of
the smaller branch venule and Wb the calibre of the
larger branch venule.

A further development by Hubbard et al. (1999) was
to allow vessels to be paired according to an arbitrary
pattern, where the largest vessel was combined with the
smallest vessel and the second largest with the second
smallest, etc. This was continued until all vessels had
been combined. If there were an odd number of vessels,
the residual vessel was carried over to the next iteration.
This technique offered clear advantages by being less
time-consuming and in an analysis of 10 eyes correlated
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well with the original Parr technique, with no evidence
of fixed or proportional systematic bias. Thus, the AVR
was calculated based on the calibres of all arterioles and
venules passing through a concentric ring, which was
defined as between 0.5 and 1 DD from the optic disc
margin. This was chosen as it was felt that retinal blood
vessels at the margins of the disc may be of an arterial
configuration, whereas they are unambiguously arter-
iolar approximately 0.5–1 DD from the disc margin
(Hubbard et al., 1999; Parr, 1974). Other amendments
were made based on the individual calibre of vessels (if
vessel calibre was 480 mm, then the branches were
considered, rather than the vessel itself and if vessels
were o25 mm, then they were not included in the
calculations). The atherosclerosis risks in communities
(ARIC) study was the first to utilise an objective, semi-
automated AVR as a measure of generalised retinal
arteriolar narrowing in response to systemic disease
(Hubbard et al., 1999). The AVR was felt to be a good
measure of generalised arteriolar attenuation, as there
was evidence that arterioles would be much more
affected by narrowing in response to cardiovascular
disease than corresponding venules (Hubbard et al.,
1999; Leung et al., 2003b).

The AVR has been used in a large number of
epidemiological studies, such as the ARIC study, the
Blue Mountains Eye Study, the Wisconsin Epidemiolo-
gic Study of Diabetic Retinopathy, the Cardiovascular
Health Study, the Beaver Dam Eye Study and Rotter-
dam Study. It has proved to be a useful measure of
generalised arteriolar attenuation (Table 2). In addition,
there is good evidence that the AVR correlates well
between right and left eyes (Leung et al., 2003a; Wong
et al., 2004b).

However, there are some conflicting results regarding
AVR, particularly in its association with atherosclerosis
(Ikram et al., 2004; Klein et al., 2000, 2004b; Wong
et al., 2001b, 2002a, 2003b), which may reflect different
populations between the various studies. In an elderly
population, after controlling for age, gender, race, mean
arterial blood pressure and antihypertensive medication,
the AVR was not associated with prevalence of
coronary heart disease, stroke, myocardial infarction
or presence of carotid disease (Wong et al., 2003b). The
ARIC study did find an association between AVR and
carotid plaque, but not with any other markers of
atherosclerosis, either clinical (cardiovascular disease or
stroke) or subclinical (carotid artery or popliteal
thickness, lower limb peripheral vascular disease), serum
cholesterol (Klein et al., 2000) or incidence of congestive
cardiac failure (Wong et al., 2005). Furthermore, it is
unclear whether using measures such as the AVR from
retinal image analysis provides additional information
regarding future risk of these systemic disease, over and
above current standardised methods of clinical assess-
ment (Wong, 2004). For a review of retinal micro-
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Fig. 4. Graph of power losses, drag, volume and surface area costs for

junctional exponents (X) and angles at bifurcations. Note, as Murray

predicted, power losses and volume are minimised when X approx-

imates to 3, and the angle at bifurcations is approximately 751.
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vascular changes in cardiovascular disease, see Wong
et al. (2001b).

A limitation of the AVR is that venules and arterioles
may have a different response to different pathologies,
e.g., the venules may be dilated in response to an
inflammatory condition, whereas the arterioles are
attenuated due to underlying hypertension. Hence, the
independent use of the CRAE and CRVE may provide
information regarding vessel changes in certain patho-
logical states that would otherwise be undetected by
using the combined AVR. Whilst the CRAE and CRVE
are not dimensionless measurements, studies have
reported these measurements of retinal vascular calibre
in association with systemic disease (Ikram et al., 2004;
Klein et al., 2004c, d; Lee et al., 2004; Leung et al.,
2003b; Wang et al., 2003; Wong et al., 2004a). A few of
these studies had refractive data in order to partially
adjust for magnification effect from retinal photography
(Wong et al., 2004b, c). The Beaver Dam Eye Study
(Wong et al., 2004b) found that myopic refraction was
associated with smaller retinal vessel diameters, but
there was no data on axial length in this study, and the
authors speculate as to whether this is purely a
magnification effect, or whether it represents a biologi-
cal or pathological process in eyes with different
refractions. They also highlight the need for future
studies with axial length data to explore more precisely
its impact on retinal vascular diameters and their
association with systemic cardiovascular disease. The
Blue Mountains Eye Study (Wong et al., 2004c) found
that smaller arterioles and venules (as determined by the
CRAE and CRVE) were associated with myopic
refraction. After correction for magnification using the
Bengtsson (1976) formula, there was no association
between retinal vessel diameters and refraction, but it
did not alter the association between AVR and
hypertension. No data on axial length was included in
this study, and using the Bengtsson method for image
magnification is known to be associated with a
systematic increase in method error in long eyes, as
only part of the variation in axial length is manifest by
ametropia (Garway-Heath et al., 1998). However,
correcting for magnification error did appear to increase
the statistical power to detect associations with retinal
vessel diameters, and the authors recommend that
refraction be taken into account for the detection of
retinal vessel changes in association with cardiovascular
disease for future studies. More recently, we found axial
length to have no bearing on retinal vascular network
geometry, including AVR, junctional exponents and
angles at vessel bifurcations (Patton et al., 2005b).

5.2.3. ‘‘Revised’’ AVR

A limitation of the Parr–Hubbard formula is the
measurements are converted from pixels to micrometres,
and therefore direct pixel calculations cannot be
performed. An estimate of the pixel-to-micrometre ratio
is calculated based on an average optic DD of 1850 mm
(Hubbard et al., 1999). Another limitation is that the
number of vessels measured has a significant impact on
the overall AVR calculation (Knudtson et al., 2003).
Knudtson et al. (2003) developed a revised measure of
AVR formula based on the six largest arterioles and
venules passing through the previously defined zone B
(concentric area between 0.5 and 1 DD, centred on the
disc), which is independent of the units of scale, and less
dependent of the number of vessels measured. This
revised Parr–Hubbard formula correlated strongly with
the previous formula, but was found to be independent
of the number of vessels measured, unlike the previous
Parr–Hubbard formula (po0:05). They arbitrarily chose
to measure the six largest arterioles and venules and
calculate a ‘‘branching coefficient’’ based on vessel
widths between the trunk vessel and the two branch
vessels:

branching coefficient ¼ ðw2
1 þ w2

2Þ=W 2,

where W is the width of trunk vessel, and w1 and w2 are
the two branch vessels.

In a sample of 44 healthy young normotensive
subjects, measuring a total of 187 arteriolar junctions,
the branching coefficient was found to be 1.28 (95% CIs
1.25–1.32). This compared well with a theoretical value
of 1.26 (based on a dichotomous symmetrical vessel
bifurcation—see below) (Fig. 4) (Sherman, 1981). From
151 venular junctions, the branching coefficient was
calculated as 1.11 (95% CIs 1.08–1.14). Thus, by placing
the calculated values into the above formula, they
calculated that:
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For arterioles

W ¼ 0:88ðw2
1 þ w2

2Þ ½0:88 ¼ vð1=1:28Þ	.

For venules

W ¼ 0:95ðw2
1 þ w2

2Þ ½0:95 ¼ vð1=1:11Þ	.

By then using the same iterative procedure combining
the largest and smallest vessels in each pairing, they
calculated an equivalent CRAE and CRVE, and the
quotient expressed as the AVR. Because there were only
six vessels to be measured, only five iterations each need
to be performed to arrive at the CRAE/CRVE. The
revised Parr–Hubbard formulae were found to predict a
reduced AVR (mean 0.69 vs. 0.85) than the previously
established technique, but the authors felt this was more
in keeping with original calculations by Kagan et al.
(1967). A further advantage of the revised AVR is the
greater ease and accuracy with which larger vessels can
be calculated. Furthermore, Knudtson et al. (2003)
undertook reanalysis of some of the previously pub-
lished analyses using the revised formulae, and noted
overall associations were still detected but with tighter
CIs. Based on these findings, the revised Parr–Hubbard
formula should be regarded as the new reference
standard for the measurement of AVR. Studies are
now employing the revised AVR to determine retinal
vessel changes in cardiovascular disease (Ikram et al.,
2004; Wong et al., 2004a, d).

The AVR is a useful device for obtaining an estimate
of generalised arteriolar width. However, it has limita-
tions, other than its dependence on the number of
retinal vessels measured and the presence of formulaic
constants requiring measurements to be performed in
micrometres. The AVR was constructed by producing a
formula that minimised the observed spread of values
for retinal vascular branching points using a least-
squares strategy (Parr and Spears, 1974b). For the
CRAE, this was done using micrometric methods, which
have been shown to be less reliable than modern
microdensitometric techniques (Newsom et al., 1992).
The theoretical optimum for the branching coefficient of
a dichotomous, symmetrical junction is 1.26 [(2)1/3]
(Sherman, 1981; Young, 1809). The original Parr study
found a branching coefficient of 1.2 for vascular
junctions, compared to Knudtson’s calculated value of
1.28 which is much closer to the theoretical value
(Knudtson et al., 2003) and both groups employed a
healthy, young, normotensive population. Parr found a
difference in root mean square deviation between their
formula and their calculated branching coefficient of
0.45 mm (mean parent widths both 83 mm), which may be
considered marginal. It is unclear from Parr’s original
paper how much difference would have existed if the
Parr formula had been compared with theoretically
optimum values of branching coefficients. In addition,
all images were considered to have a magnification of
2.5, with no correction for magnification considered,
although the subjects’ refractions ranged from �3.5 to
+2 DS. Whilst the Parr–Hubbard formula has served
well as a calculation of the AVR, the ‘new’ revised
formula of Knudtson et al. (2003) based on branching
coefficients may have greater power to detect smaller
associations between the AVR and systemic factors.

5.2.4. Optimality at vascular junctions

Vascular topographical geometry, far from being a
totally random network, has a tendency to conform to
some ‘optimal’ principals, in order to minimise physical
properties such as shear stress and work across the
vascular network (Murray, 1926a, b; Sherman, 1981;
Zamir, 1976a; Zamir and Medeiros, 1982; Zamir et al.,
1979). In 1926, Murray calculated the most efficient
circulation across a vascular network can be achieved if
blood flow is proportional to the cubed power of the
vessel’s radius (known eponymously as Murray’s law).
This was deduced from the assumption of blood acting
as a Newtonian fluid (flow rate is proportional to the
pressure difference across the vessel, and excluding any
effect of gravity and kinetic energy) and Poiseuille’s law
(resistance to fluid in a vessel is proportional to the
fourth power of the vessel radius, and inversely
proportional to the vessel length) and assuming that
the viscosity of blood is constant, and metabolism of the
blood and vessel tissue remain constant throughout the
vascular system. The power required to maintain flow is
greatly reduced by small increments in vessel radius
(proportional to the fourth power of the vessel radius),
but the power to maintain metabolism is increased by
small increments in the vessel radius (proportional to the
square of the vessel radius). By differential calculus, it
can be shown that for flow across a vascular network to
be constant requires it to be proportional to the cube of
the vessel radius (Sherman, 1981).

5.2.5. Junctional exponent

If we consider the relationship between the diameter
of the parent vessel (D0) and the diameter of the two
daughter vessels (D1 and D2) (Fig. 5), then the following
relationship exists in vascular junctions:

DX
0 ¼ DX

1 þ DX
2 ,

where X is the junctional exponent.
Thus, according to Murray, theoretical values for

the value of X (junctional exponent) approximate to
the value of 3 in healthy vascular networks in order
to minimise power losses and intra-vascular volume
(Fig. 4).

The branching coefficient used to calculate the
‘revised’ AVR is derived from Murray’s law, in the
situation where the two daughter vessels are equal in
diameter (D1 ¼ D2) (Knudtson et al., 2003).

Consider D3
0 ¼ D3

1 þ D3
2.
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Fig. 5. Grey-scale image of a peripheral vascular junction. D0 is the

diameter of parent vessel, D1 and D2 represent diameters of the two

daughter vessels. DX
0 ¼ DX

1 þ DX
2 , where X is the junctional exponent.

Fig. 6. Graph showing the relationship between b (an area ratio

D2
1=D2

2) and A (angle between D1 and D2), for the costs of power

losses, drag, volume and surface area. Note that the costs are

minimised (i.e., the confluence of the curves) when b approximates

to 1.26.
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In a symmetrical, dichotomous junction, D1 ¼ D2,
and thus this can be rewritten as D3

0 ¼ 2D3
1. Thus,

D0 ¼ ð2Þ1=3D1.
The branching coefficient detailed in Section 5.2.3

relates the area of daughter to parent vessels as a ratio,
such that daughter:parent ratio (area) ¼ 21/3:1. Hence,
the theoretical value of 1.26 (21/3) for daughter:parent
area ratio (Fig. 6). This compared favourably with
Knudtson’s et al. calculated value of 1.28. This can also
be expressed in relation to the width of parent to
daughter vessels as a ratio, such that daughter:parent
ratio (width) ¼ 1:21/3.

A variety of animal and human tissue circulations
conform to an approximation of Murray’s law (Hors-
field, 1978; Mall, 1888; Miller, 1893; Weibel, 1963). In
addition, changes in this optimal geometrical topogra-
phy are known to occur with increasing age (Stanton
et al., 1995b) and in diseased coronary arteries (Hutch-
ings et al., 1976).

5.2.6. Optimality parameter

Chapman et al. (2002) further developed the concept
to try to overcome some of the problems associated with
calculating junctional exponents. Occasionally, a per-
ipheral branch vessel width may be greater than the
parent vessel width, particularly in vascular junctions
that do not conform to optimal junctional bifurcation.
In this situation where D1 or D24D0, no such real value
of X can exist. In addition, junctional exponents are
sensitive to even small changes in vessel measurement.
This is significant when dealing with what may be vessels
of no more than 10–15 pixels diameter, even in high-
resolution images. Hence, Chapman et al. developed a
new ‘‘optimality parameter’’, to be able to get a measure
of how much the pattern of vessel widths at any junction
deviate from the optimum junctional exponent of 3.

This is given by the equation:

r ¼ ½D3
0 � ðD3

1 þ D3
2Þ	

1=3=D0,

where r is the optimality parameter, D0 the diameter of
the parent vessel, and D1 and D2 are the diameters of the
two daughter vessels.

This new calculation was found to be less prone to
small errors in vessel measurement than an iterative
procedure designed to calculate the junctional exponent.
In addition for circumstances where D1 or D24D0, a
value for r can still be calculated as it is possible to
calculate a cube root of a negative number. Using this
new optimality parameter, Chapman et al. (2002) found
that there was a significant difference in the ‘optimality’
of retinal vascular junctions between healthy individuals
and those with peripheral vascular disease. Griffith et al.
(1991) suggest a possible role for endothelium in
maintaining optimal junctional exponents, possibly via
nitric oxide and endothelin-1.

Despite the evidence that junctional exponents and
optimality parameters are affected by systemic factors,
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they have been relatively few studies using these as
markers of vascular topography, when compared with
the AVR. The concept of ‘optimalisation’ of vascular
systems is of fundamental importance in the future
construction of artificial organs. If vascular supply to
organs can be described by theoretical biological
optimisation principals, then new organs can be
designed with blood supplies that minimise shear stress,
fatigue, volume and energy across the vascular network
(Schreiner et al., 1996, 2003; Zhou et al., 1999). By being
easily visualised and photographed in vivo and readily
analysed using digital image analysis, the retinal blood
vasculature is uniquely placed in helping to elucidate
and define optimality for vascular networks.

5.2.7. Vascular bifurcation angles

In addition to junctional exponents fitting theoretical
values in an ‘optimised’ vascular network, the angle
subtended between two daughter vessels at a vascular
junction has also been found to be associated with an
optimal value, approximately 751 depending on which
costs (surface, volume, drag or power) (Woldenberg,
1986; Zamir, 1976b) are considered and the degree of
asymmetry between the two daughter vessels (Griffith
and Edwards, 1990) (Fig. 6). Retinal arteriolar bifurca-
tion angles are known to be reduced in hypertension
(Stanton et al., 1995b), increasing age (Stanton et al.,
1995a) and low birth weight males (Chapman et al.,
1997). Reduced angles at vascular junctions are asso-
ciated with less dense vascular networks (Kiani and
Hudetz, 1991). In addition, vascular responsiveness to
high oxygen saturation leads to a reduced angle at
retinal vascular junctions, but this responsiveness is
known to be reduced in hypertensives (Chapman et al.,
2000). No relationship was reported between vascular
bifurcation angles and peripheral vascular disease,
compared with normal healthy controls (Chapman
et al., 2002). Using X-ray microangiography in an
animal model, Griffith et al. (1991) found branching
angles to be unaffected by blood flow rate or change in
vasomotor tone. Associations with angles between
daughter vessels at vascular junctions and systemic
factors have not been extensively investigated and it is
unclear how angles at vascular junctions may serve as
independent predictors of systemic disease. Further
studies exploring these relationships are needed.

5.2.8. Vascular tortuosity

The degree of tortuosity of a vessel could be
summarised as the ratio between the distances a vessel
travels from A to B, and the shortest distance between
points A and B drawn by a straight line. Conditions
such as ROP have utilised indices of vascular tortuosity
as a measure of disease severity (Capowski et al., 1995;
Heneghan et al., 2002; Swanson et al., 2003). In 1995,
Capowski et al. (1995) reported using an arterial
tortuosity index from fundal photographs as a useful
measure of ROP disease state. Freedman et al. (1996)
used computer-aided analysis of fundus photographs
from eyes with a wide range of ROP severity, and traced
posterior pole blood vessels diameter and tortuosity.

There is a need to identify and quantify signs of plus
disease as early as possible before ROP has progressed
to the point where outcome is compromised. The earliest
signs of plus disease are venous engorgement and
increased arteriolar tortuosity around the optic disc.
Hence, great potential lies in the use of digital image
analysis in providing quantitative objective measure-
ments of retinal tortuosity in these patients, which can
be compared between different examiners and sequen-
tially over time. In this regard, Swanson et al. (2003)
describe a semi-automated retinal vascular image
analysis system (retinal image scale-space analysis) to
measure retinal diameters and tortuosity in preterm
infants. Whilst the difficulties in acquiring sharp,
focused images from these patients may be considerable,
the authors were able to obtain enough measurements
on relatively low-resolution images to find a significant
association between arteriolar tortuosity and ROP
severity. The authors point out some potential advan-
tages of using such a system rather than regular clinical
examination in the screening of ROP. Visualising the
posterior pole alone with the aim of diagnosing plus
disease would considerably reduce the duration and
trauma of examination and may allow healthcare
professionals other than ophthalmologists to undertake
screening. They point out the potential of telescreening
to further improve cost effectiveness of the scheme, and
the future potential of automated diagnosis (or grading)
based on the captured fundal images.

Venous beading, as a feature of diabetic retinopathy
has also been examined using Fourier analysis (Kozou-
sek et al., 1992) (image transformation based on the fact
that a periodic function may be written as the sum of
sine’s and cosine’s of varying amplitudes and frequen-
cies) or using thresholding to extract the vein, partition-
ing the vein segment into 32 pixel segments and
generating diameter data along the length of these
vessel segments (Gregson et al., 1995). Hart et al. (1999)
were able to measure and classify retinal vascular
tortuosity from RGB colour images using an automated
approach.

5.2.9. Length:diameter ratio

King et al. (1996) developed the length:diameter ratio
as another dimensionless measure of network topogra-
phy, reflecting retinal arteriolar attenuation. This is
calculated as the length from the midpoint of a
particular vascular bifurcation to the midpoint of the
preceding bifurcation, expressed as a ratio to the
diameter of the parent vessel at the bifurcation. They
found this to be increased in hypertension (King et al.,
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1996), but Chapman et al. (2002) found no association
with peripheral vascular disease. Quigley and Cohen
(1999) developed a measure of retinal topography that is
derived from Poiseuille’s law, Ohm’s law and Murray’s
law. This ‘‘pressure attenuation index’’ also reduces to
the length:diameter ratio of a retinal arteriole segment.
This index predicts that the longer and/or thinner the
retinal arterioles, the greater will be the pressure
attenuation. This may explain the observed ‘‘protective’’
effect of conditions such as myopia for diabetic
retinopathy (Pierro et al., 1999). Further studies to
explore systemic influences on length:diameter ratios in
retinal vessels are needed.

5.2.10. Fractal geometrical analysis

Fractal geometry is commonly encountered in nature,
e.g., branching patterns in trees, snowflake patterns, etc.
The concept of fractals as mathematical entities to
describe complex natural branching patterns, such as
that present in biological systems was first considered by
Mandelbrot (1967, 1982). Fractals are based on the
concept of self-similarity of spatial geometrical patterns
despite a change in scale or magnification so that small
parts of the pattern exhibit the pattern’s overall
structure. The fractal dimension (D) (in the context of
vascular branching patterns) describes how thoroughly
the pattern fills two-dimensional spaces. Unlike Eu-
clidean dimensions such as length, area or volume which
are normally described by integer values (1, 2 or 3),
fractal dimensions are usually non-integers, and lie
somewhere between 1 and 2. Different models of
formation of fractals have been developed, but the one
most commonly used to describe vascular branching
patterns is the diffusion limited aggregation (DLA)
model, developed by Witten and Sander (1981). The
basic principal involves a particle that moves in a
random fashion until it gets close to part of the existing
structure, at which point it becomes an adherent
component of the structure. The process is started with
a seeding structure, normally a single point, and
continues until the structure reaches a desired size.

Just as Murray (1926a) predicted that junctional
exponents should be approximate to the value x ¼ 3,
Mandelbrot suggests that this value would also generate
a vascular network in which the most distal vessels
would exactly fill the available space (i.e., D is very close
to the value 2), due to self-similarity branching
geometry.

Masters and Platt (1989) and Family et al. (1989) were
the first to introduce the use of fractal analysis to retinal
vascular branching patterns. They found that in normal
retina, the value of D approximates to what one would
expect in a DLA model (D ¼ 1:7). Generally, arterioles
have a lower fractal dimension than venules. Other
workers found fractal dimension values also approxi-
mated to 1.7 (Daxer, 1992; Landini et al., 1995;
Mainster, 1990). In a sample of six patients, Mainster
(1990) found a fractal dimension of 1.6370.05 and
1.7170.07 for retinal arterioles and venules, respec-
tively. Landini et al. (1993) found no difference in fractal
dimensions based on gender or age, and Masters et al.
(1992) also found no influence of age or laterality of eye.

Fractal dimensions may have implications for the way
that retinal vascular branching patterns are formed
embryologically, as they may conform to some extent to
a mathematical probability model of DLA, based on
Laplace’s equation of diffusion (Daxer, 1995; Mainster,
1990; Masters, 2004). However, Panico and Sterling
(1995) have questioned whether retinal vascular patterns
are true fractals, rather than some other ‘‘quasi-regular
lattice’’ arrangement.

Quantitative region-based fractal analysis has been
used in diabetic retinopathy (Avakian et al., 2002;
Daxer, 1993b). Non-proliferative diabetic retinal vascu-
lature has been found to have a lower fractal dimension
(D) than normals (i.e., fills less of the available space)
within the macular region using a region-based fractal
analysis of retinal fluorescein angiograms, although no
such difference was observed outside the macular region
(Avakian et al., 2002). However, as the authors point
out, use of fractal analysis in clinical practice requires
more comprehensive studies to elucidate what addi-
tional information over and above conventional assess-
ment is gathered in pathological vascular states. Fractal
dimensions may elucidate significant biological change
during the early stages of disease, before other features
of retinopathy appear. However, the global analysis of
the retinal circulation may miss these changes and not
be sensitive to early disease (Masters, 2004). Zamir
(1999) has pointed out that fractal analysis of vascular
systems is not useful unless the variability within the
arterial system (such as the junctional exponents and
vascular junction angles) is permitted within the
analysis. This variability may be masked by a simple
fractal dimension that is unable to differentiate two
vasculatures that have the same space-filling properties,
but widely different structures in their fluid dynamic
design and function (Zamir, 2001).

It is currently unclear what role fractal analysis may
have, but potential knowledge of an optimised frame-
work whereby vascular branching structures are formed
may have future implications in the design of optimal
artificial organs. If large numbers of branching struc-
tures are described by optimised fractal dimension
models such as DLA, can we infer the human vascular
system is no different?

5.3. Reliability of quantitative measurements from retinal

image analysis

Newsom et al. (1992) compared the retinal vessel
width measurement techniques of observer-driven
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micrometric techniques (making manual measurements
from a projected image), and objective computer-driven
microdensitometry, based on a vessel’s profile ‘‘grey-
level’’ intensity level, using the previously described
‘‘half-height’’ technique, that has been shown to be the
most accurate in the presence of focusing errors
(Brinchmann-Hansen, 1986). The coefficient of varia-
tion for computer-driven microdensitometry was calcu-
lated as 1.5–7.5%, compared to 6–34% for the observer-
driven technique. Delori et al. (1988) also found a
greater variability for micrometric than microdensito-
metric techniques. Brinchmann-Hansen (1986) reports a
coefficient of variation using microdensitometry of
1.5%. George et al. (1990) report a coefficient of
variation ranging from 1.2 to 3.4% with an average of
2.2% for microdensitometry.

Sherry et al. (2002) report intra-observer reliability k
values ranging from 0.8 (for trunk AVR ratios) to 0.93
(for CRVE measurements). R2 correlation analysis
showed agreement ranging from R2 ¼ 0:79 to 0.92.
For inter-observer reliability, k ranged from 0.71 (for
branch AVR measurements) to 0.9 (for CRVE measure-
ments), and correlation statistics showed R2 ranging
from 0.78 to 0.9. As one would expect, there was better
agreement for larger vessels (CRVE) and better intra-
observer than inter-observer agreement. In the ARIC
study (Hubbard et al., 1999), inter-observer agreement
(n ¼ 151 eyes) was R ¼ 0:74, 0.77 and 0.79, for CRAE,
CRVE and AVR, respectively. For intra-observer
agreement, R ¼ 0:69, 0.89 and 0.84 for CRAE, CRVE
and AVR, respectively.

Suzuki (1995) reports on a direct method of vessel
measurement using automated detection of vessel edges
by processing the one-dimensional retinal image ob-
tained by a linear image sensor set in a fundus camera,
producing results in real-time. The coefficient of
variation and the inter-observer variation of the direct
method for all measurements were 1.7171.13% and
2.2571.92%, respectively. The inter-observer variation
of the direct method was smaller than those of the
microdensitometric methods.

As stated earlier, Chapman et al. (2002) found the
junctional exponent to be sensitive to small changes in
vessel width measurement. The introduction of the
‘optimality parameter’ significantly reduced the con-
sequences of small errors measurement, using a Monte-
Carlo simulation (Chapman et al., 2002). They also
report intra-observer repeatability for retinal vessel
widths (used to calculate junctional exponents and
optimality parameters) on the basis of within-subject
standard deviation as 0.92 pixels (mean width 21.1
pixels; coefficient of variation 4.36%) and for angles
2.661 (mean angle 68.91; coefficient of variation 3.86%).
For calculating length:diameter ratio, within-subject
standard deviation was 5.09 pixels (mean length 406.9
pixels; coefficient of variation 1.25%).
Little data are available regarding the reliability of
fractal analysis, although studies show little variation of
the fractal dimension within the population being
studied (Avakian et al., 2002; Landini et al., 1995;
Masters et al., 1992).

5.4. Measurement of retinal vessels in real-time

The quantitative measures of retinal vascular topo-
graphy described above are all based on digital image
analysis of retinal images from retinal photography.
However, conventional or digital photography cannot
be used to obtain real-time continuous recording of
vessel changes, which may be useful to illicit short-term
retinal vascular changes to different pharmacological
effects, for example. The retinal vessel analyser (RVAs)
(Imedos, Weimar, Germany) consists of a retinal fundus
camera, a CCD video camera, a real-time monitor for
electronic online image acquisition, and a PC for overall
system control, image analysis and result archiving
(Seifert and Vilser, 2002; Vilser et al., 2002). It allows
real-time assessment of retinal vascular diameters at a
maximum frequency of 50 Hz (allowing 25 vessel
diameters readings per second) and has demonstrated
reproducible results (Pache et al., 2002; Polak et al.,
2000). Adaptive algorithms allow for measurement of
retinal vessel widths, utilising the absorbing properties
of haemoglobin in each blood vessel. The system is able
to automatically correct for slight adjustments in
luminance that may occur due to slight eye movement,
and thus vessel diameter can be recorded as a function
of time, as well as position along the vessel. A major
limitation of the RVAs is that it assumes that the eye
under measurement has no refractive error (emmetro-
pia) and uses standardised units to measure vessel
diameters. Therefore, the RVAs is unable to give actual
measurements of vessel wall widths if a significant
number of subjects do not conform to the assumptions
of emmetropia. However, attempts at finding a value for
the diameter of the central retinal artery in vivo using
the RVAs have been performed, utilising the diameters
of all retinal veins entering the optic disc and laser
Doppler velocimetry as a measure of the total retinal
blood flow, and combining this with the velocity of
blood flow in the central retinal artery (Dorner et al.,
2002).
6. Digital retinal vascular image analysis and

telemedicine

Because ophthalmology is largely dependent on visual
information, it is an ideal specialty for telemedicine
(Constable et al., 2000; Lamminen et al., 2003;
Murdoch, 1999; Yogesan et al., 1998). Digital capture
of images and the potential for transmission of these
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images via electronic transfer across large distances with
subsequent image analysis offers the potential for more
efficacious use of medical resources in large, rural
communities that may otherwise have difficulty obtain-
ing expert opinion (Yogesan et al., 2000). The most
common system utilised in ‘tele-ophthalmology’ is
‘‘store-and-forward’’, where images are captured, and
later transmitted electronically to be analysed at a later
date. This contrasts with live video-conferencing, which
is currently limited by electronic transmission rates
(Murdoch, 1999). ‘‘Tele-ophthalmology’’ could be
utilised between primary health care practitioners,
optometrists and ophthalmic specialists, or between
different ophthalmic units (Bowman et al., 2003;
Murdoch, 1999). Telemedicine has even been used to
aid prison medical officers in diagnosing ophthalmic
complaints, and thus reducing costs and potential
complications of prisoners attending specialist medical
centres (Yogesan et al., 2001). In a collaborative
international project, telemedicine has been found to
be cost effective in reducing the burden of eye-disease,
and that richer countries may aid capacity building in
health care systems of poorer countries (Johnstone et al.,
2004). Countries with large areas of sparsely populated
communities such as Canada (Burnier, 2003), Australia
(Constable et al., 2000) and India (Kumar et al., 2003)
may greatly benefit in terms of health care delivery to
these areas.

Telemedicine has a potential role in diabetic screening
(Choremis and Chow, 2003; Constable et al., 2000).
Kawasaki et al. (2003) report that 1076 of 1170 eyes’
fundal images (92%) were successfully evaluated by a
consultant ophthalmologist, when images were trans-
ferred via electronic mail. Lin et al. (2002) report single
non-mydriatic monochromatic wide-field digital photo-
graphy of the disc and macula to be more sensitive for
diabetic retinopathy screening than mydriatic ophthal-
moscopy, when transmitted electronically to a reading
site. When adjudicated by standard seven-field colour
photographs, the higher sensitivity of digital photo-
graphy primarily reflected the reduced sensitivity of
ophthalmoscopy in detecting early retinopathy. TOSCA
(Tele-Ophthalmological Services Citizen-Centred Appli-
cation) was developed in Europe as a project to reduce
the incidence of blindness caused by diabetic retino-
pathy (Luzio et al., 2004). Telemedicine has been
explored in screening for ROP. Yen et al. (2002) found
RetCam (Massie research Laboratories, Inc., Dublin,
CA) images captured by a neonatal nurse compared well
with examinations performed by an experienced
ophthalmologist with good sensitivity, but only moder-
ate specificity. In addition, teleophthalmology has been
utilised in macular diseases (Berger and Shin, 1999.
Ophthalmology 106, 1935–1941).

Eikelboom et al. (2000) report on the effect of JPEG
and wavelet digital image compression on the quality of
images for telemedicine. JPEG image compression
breaks the image into blocks of 8� 8 pixels and converts
these blocks into spatial frequency components. Sam-
pling of this frequency domain information by closely
preserving the low-frequency components and approx-
imating the high-frequency components is performed
and the amount of information discarded determines the
amount of compression. Wavelet employs band filters
and low pass filters to the pixel rows and columns of an
image. This produces information on the low-frequency
components of the image and the horizontal, vertical
and diagonal detail in the image (and is more
computationally intensive). Eikelboom et al. found that
wavelet compression to 15 KB for digital image trans-
mission was ideal when time and costs are to be
minimised. For computational time to be minimised,
the use of JPEG compression to 29 KB was a good
alternative.

All studies to date using telemedicine in ophthalmol-
ogy have not extended the digital process to digital
image analytical techniques. This may be difficult due to
the need for relatively high-resolution images in order to
perform quantitative digital image analysis. Transmis-
sion of such high-resolution images is currently im-
practical for telemedicine. However, image compression
algorithms are currently still evolving and with im-
proved technology, it may be possible to transmit
sufficiently high-resolution images to enable digital
image analysis.
7. Future directions

Retinal digital image analysis is able to exploit the
ease with which the retinal circulation can be visualised,
photographed, and analysed non-invasively in vivo.
Using objective, quantitative measures from retinal
vasculature which are based on principals of optimisa-
tion of a branching vasculature, studies have been able
to improve our understanding of the effect of systemic
factors on the microvasculature. The most commonly
performed quantitative measurement from digital ret-
inal vascular image analysis has been the AVR. Whilst
this has proved to be a very useful research tool to
measure generalised arteriolar narrowing, very large
epidemiological studies have been required to have
sufficient statistical power to be able to detect associa-
tions of this entity with systemic factors. It is also
unclear from current studies whether the detection of
retinal microvascular changes has additional predictive
value above current standardised methods (Wong,
2004). Recently, ‘revised’ formulae for the AVR
(Knudtson et al., 2003) may hold greater promise for
future studies to find weaker associations with greater
statistical power. Furthermore, in contrast to the wide-
spread use of the AVR, other measures of retinal
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vascular topography have been under utilised. Future
studies to explore junctional exponents and optimality
parameters at vascular junctions, angles at vessel
junctions and fractal geometrical fundal patterns may
provide more information regarding the retinal vascu-
lature in systemic disease. Large epidemiological studies
have also found value in the relationship between
features of focal microvascular changes and systemic
factors. In future, development of automated detection
systems may perform these tasks without recourse to
observer-driven methods which are more prone to
fatigue, bias and are more time-consuming.

Technology is ever developing and improving the way
that we can analyse fundal images (Stefannson, 2004).
The concept of using digital retinal images from
scanning laser ophthalmoscopes for biometric identifi-
cation is already a reality (www.retinaltech.com). The
promise of greater image resolution (modern digital
cameras exceed 16 megapixels) and computer processing
power in the future may allow more sensitive detection
of retinal microvascular changes and lead to automated
diagnosis from fundal images being a practical and
efficient adjunct to ophthalmic diagnostics. Digital
retinal vascular image analysis may also permit an
assessment of a particular individual’s specific risk
stratification for a variety of cardiovascular conditions,
and may have particular relevance to cerebrovascular
risk (Patton et al., 2005a). The advent of non-mydriatic
wide-field cSLO providing over 2001 images of the retina
may allow the detection of further information regard-
ing peripheral retinal vascular junctions, and allow a
more complete examination of the retinal vascular tree.
Such technology with further improvements may
provide screening opportunities for those considered at
high risk of such conditions affecting the far retinal
periphery, e.g., retinal tears in high myopes based on
automated computer algorithms. New imaging modal-
ities such as fundus autofluorescence offer further
opportunities to employ digital image analysis for the
objective, quantitative measurements of fundal charac-
teristics (Bellmann et al., 2003).

With an increasingly aged population and increased
strain on medical resources, the use of strategies such as
telemedicine and widespread screening of individuals at
risk of certain diseases will increase. Retinal vascular
digital image analysis will play an ever greater role in
clinical ophthalmology.
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