A Introduction

- 1. Very species rich
- 2. Characteristics
 - a. 3 pairs of legs
 - b. 2 pairs of wings (most) except flies (1 pair of wings Diptera)

B. Distribution

- 1. All habitats except saltwater replaced by crustacea there
 - a. Freshwater
 - b. Terrestrial
 - c. Ocean beaches
- 2. Very adaptable

C. External Anatomy

- 1. Three segments really tagmata head, thorax and abdomen
- 2. Compound eyes
- 3. Highly specialized mouthparts fit ecology

D. Internal Anatomy

- 1. Nutrition
 - a. Phytophagous eat plants
 - b. Predaceous
 - c. Saprophagous eat dead animals
 - d Parasites -
 - 1. Fleas on vertebrates
 - 2. Wasps on other insects caterpilars

2. Gas exchange

- 1. Tracheal system thin-walled tubes that are distributed through body
 - a. Spiracles are openings on sides of insect
 - b. Trachea -->tracheoles (smaller)
 - c. Every living cell near a tracheole

- d. Muscular motion pumps air
- 2. Gills a few juvenile stages have tracheal gills extensions of body wall attached to tracheids
 - 3. Excretion and water balance
 - a. Malpighian tubules excretory organs and conserve body fluids
 - 4. Sense Organs
 - a. Compound eyes
 - 1. Visual acuity lower than humans I don't believe this
 - a. What about dragonflies on summer lake?
 - b. Sounds by tympanic organs on sensilla
 - 5. Reproduction
 - a. Separate sexes
 - b. Sex attractants (pheromones)
 - c. Many species normally lay eggs on food plants find them by chemical cues
 - 6. Metamorphosis and growth
 - a. Change in form as they grow radically
 - 1. Change in ecological niche
 - 2. Molts stage between molts is an "instar"
 - b. Holometabolous development (complete metamorphosis)
 - 1. egg
 - 2. Larva radically different life style from adult
 - 3. Pupa reorganization of anatomy -
 - 4. Adult
 - 5. Representative butterfly
 - c. Hemimetablous development (incomplete metamorphosis)
 - 1. egg
 - 2. nymph no wings

- 3. Adult wings
- 4. No pupa to reorganize anatomy
- d. Metamorphosis regulated by hormones

7. Diapause

- a. Resting period usually winter
- b. Set off by external Environment

E. Behavior

- 1. Highly programed, instinctual behavior respond to specific stimuli
- 2. Chemical signals Pheromones = substances secreted by one organism that affect another
 - a. Effective in very small quantities
 - b. Colony markers in social insects
 - c. Sex attractants in moths
 - 1. Gypsy moth used to trap males
 - 2. Could be used as a non-toxic pesticide to disrupt reproduction

2. Sound

- a. Also used to attract mates
- b. Crickets, cicadas
- 3. Visual signals fire flies
 - a. Frequency of light flashes identifies species
 - b. Used as a sex attractant female in vegetation flashes at male
 - 1. Species specific pattern
 - c. Predator fireflies mimic flashes of other species, catch and devour males

F. Social Behavior

- 1. Bees, wasps, ants and termites
- 2. Some of the most social of all animals live in large colonies
- 3. Bee Hive
 - a. Queen is female rest of hive is sterile female workers

- b. Queen lays eggs to produce workers
- c. Workers perform maintainence tasks for hive
 - 1. Food getting nectar and pollen from flowers
- 2. Construct comb of wax bee's wax hexagonal chambers contain either growing larvae or honey storage (regurgitated nectar)
 - 3. Care for young
- d. Normal reproduction queen lays eggs and workers feed them
 - 1. If hive gets too large, queen withholds sperm from eggs
 - a. Get male (drone)
 - 2. Workers feed selected larvae royal jelly contains pheromone that larva to become queen
 - 3. When larvae become adults, new queens mate with drones drones die new queen splits hive with old queen find new location (swarm)
- e. Bee society representative of other hymenoptera very complex

E, Insects and Human Welfare

causes

- 1. Symbioic relationship between bees and flowering plants
 - a. Not mentioned by your book. It is a fundamental relationship in nature
 - b. Insects are major pollinators of flowering plants
 - c. Probably evolved together flowers are structures to attract insects (mostly)
 - d. Pollinators take pollen from one plant to other allows fertilization of ova in plants
 - e. Nectar is a reward to insect for pollination
- 2. Predators kill harmful insects
- 3. Food for important human food animals
 - a. Freshwater fish Trout?
- 4. Harmful insects lots
 - a. Parasites on humans lice, mosquitos, black flies
 - b. Eat human food

- c. Carry disease mosquitos, fleas, flies
- 5. Control of insects
 - a. Development of chemicals to kill insects
 - 1. Not very selective
 - b. Alternatives
 - 1. Resistant crops
 - 2. Introduction of insect predators
 - c. Integrated Pest Management
 - 1. Understand ecology of insect pest
 - 2. Use various techniques to combat insect
 - a. Control times of planting
 - b. Resistant plant varieties
 - c. biological controls
 - d. sparing use of insecticides