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Cooperation is needed for evolution to construct new levels of organization. Genomes, cells,
multicellular organisms, social insects, and human society are all based on cooperation. Cooperation
means that selfish replicators forgo some of their reproductive potential to help one another. But
natural selection implies competition and therefore opposes cooperation unless a specific mechanism
is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct
reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple
rule is derived that specifies whether natural selection can lead to cooperation.

Evolution is based on a fierce competition
between individuals and should therefore
reward only selfish behavior. Every gene,

every cell, and every organism should be de-
signed to promote its own evolutionary success
at the expense of its competitors. Yet we ob-
serve cooperation on many levels of biolog-
ical organization. Genes cooperate in genomes.
Chromosomes cooperate in eukaryotic cells.
Cells cooperate in multicellular organisms. There
are many examples of cooperation among ani-
mals. Humans are the champions of cooperation:
From hunter-gatherer societies to nation-states,
cooperation is the decisive organizing principle
of human society. No other life form on Earth is
engaged in the same complex games of cooper-
ation and defection. The question of how natural
selection can lead to cooperative behavior has
fascinated evolutionary biologists for several
decades.

A cooperator is someone who pays a cost,
c, for another individual to receive a benefit,
b. A defector has no cost and does not deal
out benefits. Cost and benefit are measured in
terms of fitness. Reproduction can be genetic
or cultural. In any mixed population, defectors
have a higher average fitness than cooperators
(Fig. 1). Therefore, selection acts to increase
the relative abundance of defectors. After some
time, cooperators vanish from the population.
Remarkably, however, a population of only
cooperators has the highest average fitness,
whereas a population of only defectors has
the lowest. Thus, natural selection constantly
reduces the average fitness of the popula-
tion. Fisher’s fundamental theorem, which
states that average fitness increases under
constant selection, does not apply here be-
cause selection is frequency-dependent: The
fitness of individuals depends on the fre-
quency (= relative abundance) of cooperators in
the population. We see that natural selection in

well-mixed populations needs help for establish-
ing cooperation.

Kin Selection
When J. B. S. Haldane remarked, “I will jump
into the river to save two brothers or eight
cousins,” he anticipated what became later known
as Hamilton’s rule (1). This ingenious idea is that
natural selection can favor cooperation if the
donor and the recipient of an altruistic act are
genetic relatives. More precisely, Hamilton’s rule
states that the coefficient of relatedness, r, must
exceed the cost-to-benefit ratio of the altruistic act:

r > c/b (1)

Relatedness is defined as the probability of
sharing a gene. The probability that two brothers
share the same gene by descent is 1/2; the same
probability for cousins is 1/8. Hamilton’s theory
became widely known as “kin selection” or
“inclusive fitness” (2–7). When evaluating the
fitness of the behavior induced by a certain gene,
it is important to include the behavior’s effect on
kin who might carry the same gene. Therefore,
the “extended phenotype” of cooperative behav-
ior is the consequence of “selfish genes” (8, 9).

Direct Reciprocity
It is unsatisfactory to have a theory that can ex-
plain cooperation only among relatives. We also

observe cooperation between unrelated indi-
viduals or even between members of different
species. Such considerations led Trivers (10) to
propose another mechanism for the evolution of
cooperation, direct reciprocity. Assume that
there are repeated encounters between the same
two individuals. In every round, each player has
a choice between cooperation and defection. If I
cooperate now, you may cooperate later. Hence,
it might pay off to cooperate. This game theoretic
framework is known as the repeated Prisoner’s
Dilemma.

But what is a good strategy for playing this
game? In two computer tournaments, Axelrod
(11) discovered that the “winning strategy”
was the simplest of all, tit-for-tat. This strat-
egy always starts with a cooperation, then it
does whatever the other player has done in the
previous round: a cooperation for a coopera-
tion, a defection for a defection. This simple
concept captured the fascination of all enthu-
siasts of the repeated Prisoner’s Dilemma.
Many empirical and theoretical studies were
inspired by Axelrod’s groundbreaking work
(12–14).

But soon an Achilles heel of the world
champion was revealed: If there are erroneous
moves caused by “trembling hands” or “fuzzy
minds,” then the performance of tit-for-tat de-
clines (15, 16). Tit-for-tat cannot correct mis-
takes, because an accidental defection leads to a
long sequence of retaliation. At first, tit-for-tat
was replaced by generous-tit-for-tat (17), a strat-
egy that cooperates whenever you cooperate,
but sometimes cooperates although you have
defected [with probability 1 − (c/b)]. Natural
selection can promote forgiveness.

Subsequently, tit-for-tat was replaced by
win-stay, lose-shift, which is the even simpler
idea of repeating your previous move when-
ever you are doing well, but changing other-
wise (18). By various measures of success,
win-stay, lose-shift is more robust than either
tit-for-tat or generous-tit-for-tat (15, 18). Tit-
for-tat is an efficient catalyst of cooperation in a
society where nearly everybody is a defector,
but once cooperation is established, win-stay,
lose-shift is better able to maintain it.
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Fig. 1. Without any mechanism for the evolution of cooperation, natural selection favors defectors. In a
mixed population, defectors, D, have a higher payoff (= fitness) than cooperators, C. Therefore, natural
selection continuously reduces the abundance, i, of cooperators until they are extinct. The average
fitness of the population also declines under natural selection. The total population size is given by N. If
there are i cooperators and N − i defectors, then the fitness of cooperators and defectors, respectively,
is given by fC = [b(i − 1)/(N − 1)] − c and fD = bi/(N − 1). The average fitness of the population is given
by ‾f = (b − c)i/N.
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The number of possible strategies for the
repeated Prisoner’s Dilemma is unlimited, but
a simple general rule can be shown without
any difficulty. Direct reciprocity can lead to the
evolution of cooperation only if the probability,
w, of another encounter between the same two
individuals exceeds the cost-to-benefit ratio of
the altruistic act:

w > c/b (2)

Indirect Reciprocity
Direct reciprocity is a powerful mechanism
for the evolution of cooperation, but it leaves
out certain aspects that are particularly impor-
tant for humans. Direct reciprocity relies on
repeated encounters between the same two
individuals, and both individuals must be able
to provide help, which is less costly for the
donor than it is beneficial for the recipient.
But often the interactions among humans are
asymmetric and fleeting. One person is in a
position to help another, but there is no possi-
bility for a direct reciprocation.We help strangers
who are in need. We donate to charities that do
not donate to us. Direct reciprocity is like a barter
economy based on the immediate exchange of
goods, whereas indirect reciprocity resembles the
invention of money. The money that fuels the
engines of indirect reciprocity is reputation.

Helping someone establishes a good reputa-
tion, which will be rewarded by others. When
deciding how to act, we take into account the
possible consequences for our reputation. We
feel strongly about events that affect us directly,
but we also take a keen interest in the affairs of
others, as demonstrated by the contents of
gossip.

In the standard framework of indirect rec-
iprocity, there are randomly chosen pairwise
encounters where the same two individuals
need not meet again. One individual acts as
donor, the other as recipient. The donor can
decide whether or not to cooperate. The inter-
action is observed by a subset of the popu-
lation who might inform others. Reputation
allows evolution of cooperation by indirect
reciprocity (19). Natural selection favors strat-
egies that base the decision to help on the
reputation of the recipient. Theoretical and em-
pirical studies of indirect reciprocity show that
people who are more helpful are more likely to
receive help (20–28).

Although simple forms of indirect reciprocity
can be found in animals (29), only humans seem
to engage in the full complexity of the game.
Indirect reciprocity has substantial cognitive
demands. Not only must we remember our own
interactions, we must also monitor the ever-
changing social network of the group. Language
is needed to gain the information and spread the
gossip associated with indirect reciprocity. Pre-
sumably, selection for indirect reciprocity and
human language has played a decisive role in
the evolution of human intelligence (28). Indirect

reciprocity also leads to the evolution of morality
(30) and social norms (21, 22).

The calculations of indirect reciprocity are
complicated and only a tiny fraction of this uni-
verse has been uncovered, but again a simple
rule has emerged (19). Indirect reciprocity can
only promote cooperation if the probability, q,
of knowing someone’s reputation exceeds the
cost-to-benefit ratio of the altruistic act:

q > c/b (3)

Network Reciprocity
The argument for natural selection of defection
(Fig. 1) is based on a well-mixed population,
where everybody interacts equally likely with
everybody else. This approximation is used by
all standard approaches to evolutionary game
dynamics (31–34). But real populations are not
well mixed. Spatial structures or social net-
works imply that some individuals interact
more often than others. One approach of cap-
turing this effect is evolutionary graph theory
(35), which allows us to study how spatial struc-
ture affects evolutionary and ecological dy-
namics (36–39).

The individuals of a population occupy the
vertices of a graph. The edges determine who
interacts with whom. Let us consider plain
cooperators and defectors without any strategic
complexity. A cooperator pays a cost, c, for
each neighbor to receive a benefit, b. Defec-
tors have no costs, and their neighbors receive
no benefits. In this setting, cooperators can
prevail by forming network clusters, where
they help each other. The resulting “network
reciprocity” is a generalization of “spatial rec-
iprocity” (40).

Games on graphs are easy to study by com-
puter simulation, but they are difficult to analyze
mathematically because of the enormous num-
ber of possible configurations that can arise.
Nonetheless, a surprisingly simple rule deter-
mines whether network reciprocity can favor
cooperation (41). The benefit-to-cost ratio must
exceed the average number of neighbors, k, per
individual:

b/c > k (4)

Group Selection
Selection acts not only on individuals but also
on groups. A group of cooperators might be
more successful than a group of defectors. There
have been many theoretical and empirical studies
of group selection, with some controversy, and
recently there has been a renaissance of such
ideas under the heading of “multilevel selection”
(42–50).

A simple model of group selection works as
follows (51). A population is subdivided into
groups. Cooperators help others in their own
group. Defectors do not help. Individuals re-
produce proportional to their payoff. Offspring
are added to the same group. If a group reaches

a certain size, it can split into two. In this case,
another group becomes extinct in order to con-
strain the total population size. Note that only
individuals reproduce, but selection emerges
on two levels. There is competition between
groups because some groups grow faster and
split more often. In particular, pure cooperator
groups grow faster than pure defector groups,
whereas in any mixed group, defectors re-
produce faster than cooperators. Therefore, se-
lection on the lower level (within groups) favors
defectors, whereas selection on the higher level
(between groups) favors cooperators. This model
is based on “group fecundity selection,” which
means that groups of cooperators have a higher
rate of splitting in two. We can also imagine a
model based on “group viability selection,”

Fig. 2. Evolutionary dynamics of cooperators
and defectors. The red and blue arrows indicate
selection favoring defectors and cooperators,
respectively. (A) Without any mechanism for the
evolution of cooperation, defectors dominate. A
mechanism for the evolution of cooperation can
allow cooperators to be the evolutionarily stable
strategy (ESS), risk-dominant (RD), or advanta-
geous (AD) in comparison with defectors. (B)
Cooperators are ESS if they can resist invasion by
defectors. (C) Cooperators are RD if the basin of
attraction of defectors is less than 1/2. (D)
Cooperators are AD if the basin of attraction of
defectors is less than 1/3. In this case, the fixa-
tion probability of a single cooperator in a finite
population of defectors is greater than the in-
verse of the population size (for weak selection).
(E) Some mechanisms allow cooperators to domi-
nate defectors.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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and between groups—can be added up. The
details of all these arguments and their limi-
tations are given in (53).

For kin selection, the calculation shows that
Hamilton’s rule, r > c/b, is the decisive criterion
for all three measures of evolutionary success:
ESS, RD, and AD. Similarly, for network rec-
iprocity and group selection, we obtain the
same condition for all three evaluations, name-
ly b/c > k and b/c > 1 + (n/m), respectively.
The reason is the following: If these con-
ditions hold, then cooperators dominate defec-
tors. For direct and indirect reciprocity, we
find that the ESS conditions lead to w > c/b
and q > c/b, respectively. Slightly more strin-
gent conditions must hold for cooperation to be
RD or AD.

Conclusion
Each of the five possible mechanisms for the
evolution of cooperation—kin selection, direct
reciprocity, indirect reciprocity, network reci-
procity and group selection—can be described
by a characteristic 2 × 2 payoff matrix, from
which we can directly derive the fundamental
rules that specify whether cooperation can
evolve (Table 1). Each rule can be expressed
as the benefit-to-cost ratio of the altruistic act
being greater than some critical value. The
payoff matrices can be imported into standard
frameworks of evolutionary game dynamics.
For example, we can study replicator equations
for games on graphs (54), for group selection,
and for kin selection. This creates interesting
new possibilities for the theory of evolutionary
dynamics (55).

I have not discussed all potential mechanisms
for the evolution of cooperation. An interest-
ing possibility is offered by “green beard” mod-
els where cooperators recognize each other via
arbitrary labels (56–58). Another way to obtain
cooperation is making the game voluntary rather
than obligatory: If players can choose to cooper-
ate, defect, or not play at all, then some level of
cooperation usually prevails in dynamic oscil-
lations (59). Punishment is an important factor
that can promote cooperative behavior in some
situations (60–64), but it is not a mechanism for
the evolution of cooperation. All evolutionary
models of punishment so far are based on un-
derlying mechanisms such as indirect reciprocity
(65), group selection (66, 67), or network reci-
procity (68). Punishment can enhance the level of
cooperation that is achieved in such models.

Kin selection has led to mathematical the-
ories (based on the Price equation) that are
more general than just analyzing interactions
between genetic relatives (4, 5). The interacting
individuals can have any form of phenotypic

correlation. Therefore, kin selection theory also
provides an approach to compare different mech-
anisms for the evolution of cooperation (69, 70).

The two fundamental principles of evolution
are mutation and natural selection. But evolution
is constructive because of cooperation. New
levels of organization evolve when the compet-
ing units on the lower level begin to cooperate.
Cooperation allows specialization and thereby
promotes biological diversity. Cooperation is the
secret behind the open-endedness of the evolu-
tionary process. Perhaps the most remarkable
aspect of evolution is its ability to generate co-
operation in a competitive world. Thus, we
might add “natural cooperation” as a third fun-
damental principle of evolution beside mutation
and natural selection.
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The standard payoff matrix between cooperators, C, and defectors, D, is given by

( C D

C b − c −c

D b 0

)
(1)

The entries in the payoff matrix refer to the ‘row player’. For each interaction, a cooperator

pays a cost, c. Interacting with a cooperator leads to a benefit, b. Thus, the payoff for

C versus C is b − c; the payoff for C versus D is −c; the payoff for D versus C is b; the

payoff for D versus D is 0. Usually, we assume that b > c, otherwise the payoff for two

cooperators is less than the payoff for two defectors, and cooperation becomes nonsensical.

I will now discuss how to derive the five 2 × 2 matrices of Table 1.

1. Kin selection

A simple way to study games between relatives was proposed by Maynard Smith for

the Hawk-Dove game (S1). I will use this method to analyze the interaction between

cooperators and defectors. Consider a population where the average relatedness between

individuals is given by r, which is a number between 0 and 1. The concept of inclusive

fitness implies that the payoff received by a relative is added to my own payoff multiplied

by r. Therefore, we obtain the modified matrix

( C D

C (b − c)(1 + r) br − c

D b − rc 0

)
(2)

For this payoff matrix, cooperators dominate defectors if b/c > 1/r. In this case, coopera-

tors are also evolutionarily stable (ESS), risk-dominant (RD) and advantageous (AD); see

main text for the definition of ESS, RD and AD.
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Another method to describe games among relatives was proposed by Grafen (S2)

also in the context of the Hawk Dove game. Let us assume that interactions are more

likely between relatives. Each individual has a fraction, r, of its interactions with its own

relatives, who use the same strategy, and a fraction 1 − r with random individuals from

the population, who could use the same or a different strategy. Let x denote the frequency

of cooperators. The frequency of defectors is given by 1−x. The fitness of a cooperator is

FC(x) = r(b−c)+(1−r)[(b−c)x−c(1−x)]. The fitness of a defector is FD(x) = (1−r)bx.

These linear fitness function can be described by the payoff matrix

( C D

C FC(1) FC(0)

D FD(1) FD(0)

)
=

( C D

C b − c br − c

D b(1 − r) 0

)
(3)

Again we find that cooperators dominate defectors if b/c > 1/r. Therefore, both ap-

proaches give the same answer, which turns out to be Hamilton’s rule (S3). Note that

the exact population genetics of sexually reproducing, diploid individuals require more

complicated calculations (S4).

2. Direct reciprocity

In order to derive a necessary condition for the evolution of cooperation in the repeated

Prisoner’s Dilemma, we can study the interaction between ‘always-defect’ (ALLD) and tit-

for-tat (TFT). If TFT cannot hold itself against ALLD then no cooperative strategy can.

TFT starts with cooperation and then does whatever the opponent has done in the previous

move. We ignore erroneous moves. In this setting, TFT playing ALLD will cooperate in

the first round and defect afterwards. Therefore, the payoff for TFT versus ALLD is −c.

The payoff for ALLD versus TFT is b. Only the first round leads to a payoff, while all

subsequent rounds consist of mutual defection and produce zero payoff for both players.

The payoff for ALLD versus ALLD is 0. The payoff for TFT versus TFT is (b−c)/(1−w).

The parameter w denotes the probability of playing another round between the same two

players. The average number of rounds is given by 1/(1−w). Hence, we obtain the payoff

matrix

( C D

C (b − c)/(1 − w) −c

D b 0

)
(4)

From this matrix we immediately obtain the three conditions for ESS, RD and AD that

are shown in Table 1. For cooperators (using TFT) to be ESS in comparison with ALLD,
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we need b/c > 1/w. Slightly more stringent conditions are required for cooperators to be

RD or AD. Note that ALLD is always an ESS, and hence cooperators cannot dominate

defectors in the framework of direct reciprocity.

The calculations for exploring the interactions of larger sets of probabilistic strategies

of the repeated Prisoner’s Dilemma in the presence of noise (S5) are more complicated (S6,

S7). Often there are cycles between ALLD, TFT and unconditional cooperators (ALLC)

(S8). The point is that b/c > 1/w is a necessary condition for the evolution of cooperation.

This argument is related to the Folk theorem which states that certain trigger strategies

can achieve cooperation if there are enough rounds of the repeated Prisoner’s Dilemma

(S9, S10).

3. Indirect reciprocity

Indirect reciprocity describes the interaction between a donor and a recipient. The

donor can either cooperate or defect. The basic idea of indirect reciprocity is that cooper-

ation increases ones own reputation, while defection reduces it. The fundamental question

is whether natural selection can lead to strategies that base their decision to cooperate (at

least to some extent) on the reputation of the recipient.

A strategy for indirect reciprocity consists of an action rule and an assessment norm.

The action rule determines whether to cooperate or to defect in a particular situation

depending on the recipient’s reputation (image score) and ones own. The assessment norm

determines how to evaluate an interaction between two other people as an observer. Most

analytic calculations of indirect reciprocity assume binary image scores: the reputation

of someone is either ‘good’ or ‘bad’. Nobody so far has succeeded to formulate an exact

analysis for the realistic situation where the image scores are more gradual and different

people have different image scores of the same person as a consequence of private and

incomplete information.

In order to derive a necessary condition for the evolution of cooperation by indirect

reciprocity, let us study the interaction between the two basic strategies: (i) defectors

and (ii) cooperators who cooperate unless they know the reputation of the other person

to indicate a defector. The parameter q denotes the probability to know the reputation

of another person. A cooperator always helps another cooperator. A cooperator helps a
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defector with probability 1 − q. Defectors never help. Hence, we obtain the payoff matrix

( C D

C b − c −c(1 − q)

D b(1 − q) 0

)
(5)

We have assumed that in a pairwise interaction both individuals are donor and recipient.

If only one of them is donor and the other recipient, then all entries are multiplied by 1/2,

which makes no difference. Note that the payoff matrices (4) and (5) are identical (up to

a factor) if we set w = q. Hence, indirect reciprocity leads to the same three conditions

for ESS, RD and AD as direct reciprocity with q instead of w (see Table 1).

4. Network reciprocity

Spatial games can lead to cooperation in the absence of any strategic complexity

(S11): unconditional cooperators can coexist with and sometimes outcompete uncondi-

tional defectors. This effect is called ‘spatial reciprocity’. Spatial games are usually played

on regular lattices such as square, triangular or hexagonal lattices. Network reciprocity

is a generalization of spatial reciprocity to graphs. Individuals occupy the vertices of

a graph. The edges denotes who interacts with whom. In principle, there can be two

different graphs. The ‘interaction graph’ determines who plays with whom. The ‘replace-

ment graph’ determines who competes with whom for reproduction, which can be genetic

or cultural. Here we assume that the interaction and replacement graphs are identical.

Evolutionary graph theory (S12) is a general approach to study the effect of population

structure or social networks on evolutionary dynamics.

We consider a ‘two coloring’ of the graph: each vertex can be either a cooperator or a

defector. A cooperator pays a cost, c, for each neighbor to receive a benefit, b. Defectors

pay no cost and distribute no benefits. According to this simple rule the payoff, P , for

each individual is evaluated. The fitness of an individual is given by 1 − ω + ωP where

ω ∈ [0, 1] denotes the intensity of selection. Weak selection means that ω is much smaller

than 1. Evolutionary updating works as follows: in each time step a random individual is

chosen to die; the neighbors compete for the empty site proportional to their fitness.

We want to calculate the ‘fixation probabilities’, ρC , that a single cooperator starting

in a random position on the graph takes over an entire population of defectors, and ρD,

that a single defector starting in a random position on the graph takes over an entire

population of cooperators. The fixation probability of a neutral mutant is 1/N where N is
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the population size. If ρC > 1/N then selection favors the fixation of cooperators; in this

case cooperation is an advantageous strategy (AD).

For regular graphs, where each individual has exactly k neighbors, a calculation using

pair-approximation (S13) leads to a surprisingly simple result: if b/c > k then ρC > 1/N >

ρD for weak selection and large N . Numerical simulations show that this result is also

an excellent approximation for non-regular graphs such as random graphs and scale free

networks (S13).

The pair approximation calculation (for k ≥ 3) also leads to a deterministic differen-

tial equation which describes how the expected frequency of cooperators (and defectors)

changes over time (S14). This differential equation turns out to be a standard replicator

equation (S15,S16) with a modified payoff matrix. For the interaction between cooperators

and defectors on a graph with average degree k this modified payoff matrix is of the form

( C D

C b − c H − c

D b − H 0

)
(6)

where

H =
(b − c)k − 2c

(k + 1)(k − 2)
.

It is easy to see that the payoff matrix (6) leads to the condition b/c > k for cooperators

to dominate defectors. In this case, cooperators are also ESS, RD and AD.

5. Group selection

Many models of group selection have been proposed over the years (S17-S29). It is

difficult to formulate a model which is so simple that it can be studied analytically. One

such model is the following (S30). A population is subdivided into m groups. The maxi-

mum size of a group is n. Individuals interact with others in the same group. Cooperators

pay a cost c for each other member of the group to receive a benefit b. Defectors pay

no costs and distribute no benefits. The fitness of an individual is 1 − ω + ωP , where P

is the payoff and ω the intensity of selection. At each time step, an individual from the

entire population is chosen for reproduction proportional to fitness. The offspring is added

to the same group. If the group reaches the maximum size, it can split into two groups

with a certain probability, p. In this case, a randomly selected group dies to prevent the

population from exploding. The maximum population size is mn. With probability 1 − p

the group does not divide. In this case, a random individual of that group is chosen to die.
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For small p, the fixation probability of a single cooperator in the entire population is given

by the fixation probability of a single cooperator in a group times the fixation probability

of that group.

For the fixation probability of one cooperator in a group of n− 1 defectors we obtain

φC = [1/n][1 − (b + cn − c)ω/2]. For the fixation probability of one cooperator group in a

population of m − 1 defector groups we obtain ΦC = [1/m][1 + (b − c)(m − 1)ω/2]. Both

results hold for weak selection (small ω). Note that the lower level selection within a group

is frequency dependent and opposes cooperators, while the higher level selection between

groups is constant and favors cooperators.

In the case of rare group splitting, the fixation probability of a single cooperator in the

entire population, is given by the product ρC = φCΦC . It is easy to see that ρC > 1/(nm)

leads to b/c > 1 + [n/(m− 2)]. If this inequality holds, then cooperators are advantageous

(and defectors disadvantageous) once both levels of selection are combined.

For a large number of groups, m � 1, we obtain the simplified condition b/c > 1+n/m.

The benefit to cost ratio of the altruistic act must exceed one plus the ratio of group size

over the number of groups. The model can also be extended to include migration, which can

be seen as ‘noise’ of group selection. In this case, the relevant criterion is b/c > 1+µ+n/m,

where µ is the average number of migrants accepted over the life-time of a group (S30).

Now comes a surprising move that allows us to reduce the evolutionary dynamics on

two levels of selection to a single two-person game on one level of selection. The payoff

matrix that describes the interactions within a group is given by

( C D

C b − c −c

D b 0

)
(7)

Between groups there is no game dynamical interaction in our model, but groups divide at

rates that are proportional to the average fitness of individuals in that group. Therefore

one can say that cooperator groups have a constant payoff b−c, while defector groups have

a constant payoff 0. Hence, in a sense the following ‘game’ between groups is happening

( C D

C b − c b − c

D 0 0

)
(8)

Remember also that the ‘fitness’ of a group is 1− ω + ωP where P is its ‘payoff’. We can

now multiply the first matrix by the group size, n, and the second matrix by the number
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of groups, m, and add the two matrices. The result is

( C D

C (b − c)(n + m) bm − c(m + n)

D bn 0

)
(9)

In this simple 2× 2 game, cooperators dominate defectors if b/c > 1+(n/m). In this case,

cooperators are also ESS, RD and AD.

Interestingly, the method also gives the right answer for two arbitrary payoff matrices

describing the games on the two levels. The intuition for adding the two matrices multiplied

with the respective population size is as follows. For fixation of a new strategy in a

homogeneous population using the other strategy, first the game dynamics within one

group (of size n) have to be won and then the game dynamics between m groups have

to be won. For weak selection and large m and n, the overall fixation probability is the

same as the fixation probability in the single game using the combined matrix (9) and

population size, mn. The stochastic process on two levels can be studied by a standard

replicator equation using the combined matrix.

Finally, note that payoff matrix (9) for group selection is structurally identical to

the payoff matrix (3) for kin selection if we set r = m/(m + n) pointing to yet another

interesting relationship between kin selection and group selection (S31).
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