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Approximation Methods: Damped and Undamped Oscillators 

 

There are several methods for solving differential equations numerically. The Euler 

method was the first method used to solve numerically differential equations. However, the Euler 

method is not very precise and is prone to errors. In fact, when it is used to model damped and 

undamped oscillators, the Euler method shows the oscillator’s position, velocity, and 

acceleration increasing, therefore implying that it is gaining energy, which is clearly impossible 

due to the first law of thermodynamics. There have been numerous attempts by individuals to 

improve upon the Euler method since it was created, and they have gotten to a point where with 

just a few minor tweaks to the Euler algorithm, one can get an extremely precise approximation 

of a differential equation. Figure 1 shows an example of an undamped and damped oscillator. 

For the undamped oscillator, we used a time step of 0.002 in the code, and a time step of 0.25 for 

the damped oscillator. 

 

 

 

 

 

 

The equation for damped and undamped oscillators follows from Isaac Newton’s second 

law of motion, F=ma. 

 (1) 

Fig. 1. An undamped oscillator (pendulum) and a damped oscillator (spring) 
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DO I = 1, 250  
A = -(C1 * Xold + C2 * Vold)  
V = Vold + Dt * A  
X = Xold + dt * Vold  
TimeX = TimeX + Dt 
WRITE (40, 1000) TimeX, X, V, A  
Xold = X  
Vold = V  
END DO  

 

Fig. 2. Sample FORTRAN code for using Euler method 

The Euler algorithm approximates xn+1 by adding the velocity multiplied by the time step to xn, 

 (2) 

where h is the time step and v(t) the function for the velocity of the oscillator. The Euler 

algorithm is simple to program. Figure 2 shows the loop that one could use to implement the 

Euler method in a FORTRAN program. 

 

 

 

 

 

 

 

Figure 3 depicts the position versus time for an initial angular displacement of 1º and an initial 

velocity of 0 rad/s that was obtained using the Euler method. Notice that extrema for the graph 

are not constant, they increase slightly as time increases. This is due to how the Euler algorithm 

is set up. The Euler algorithm uses an older value for velocity in calculating the position than 

what could be used. By not using the most recent value for velocity, the position was off and 

caused this noticeable error in the calculations of the Euler algorithm. Figure 4 shows the graph 

of position vs. time for the Euler method for various values for the time step. Notice how that as 

the time step gets smaller, the accuracy of the method increases. This increased the 

computational power that was required to find the solution. This increase is undesirable when 

there are other ways to find the solution to an undamped oscillator that do not require as much 

computational time to find and accurate solution. 
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Fig. 3. Position vs. time for an undamped oscillator using Euler method 

Fig. 4. Position vs. time for an undamped oscillator 

using Euler method with various time steps 
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Fig. 5. Position vs. time for a damped oscillator using the Euler method 

When one considers a damped oscillator, the Euler method does even worse. Figure 5 

depicts the position versus time for an initial displacement of 1m and an initial velocity of 0 m/s 

that was obtained using the Euler method. Notice that extrema for the graph are not constant, 

they increase greatly as time increases. In fact, this graph looks the opposite of how it should. 

Since the oscillator is damped, its amplitude should eventually decrease over time. 
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DO I = 1, 250  
A = -(C1 * Xold + C2 * Vold) 
V = Vold + Dt * A 
X = Xold + dt * V 
TimeX = TimeX + Dt  
WRITE (50, 1000) TimeX, X, V, 
A  
Xold = X  
Vold = V  
END DO  

 

It can be clearly seen that there is a serious problem with the Euler method providing 

unstable results. The Euler-Cromer method for solving first order differential equations corrects 

this problem by always using the most recent value for the velocity when calculating the 

position. Therefore, the equation for the Euler-Cromer method is given by: 

 (3) 

The Euler-Cromer algorithm is also simple to program. Figure 6 shows the loop that one could 

use to implement the Euler-Cromer method in a FORTRAN program. 

 

 

 

 

 

 

 

Figure 7 depicts the position versus time for an initial angular displacement of 1º and an 

initial velocity of 0 rad/s that was obtained using the Euler-Cromer method. Notice how the 

graph is relatively stable and that the oscillator’s amplitude does not increase as time increases. 

When one considers a damped oscillator, the Euler-Cromer method does much better than the 

Euler method. Figure 8 depicts the position versus time for an initial displacement of 1m and an 

initial velocity of 0 m/s that was obtained using the Euler-Cromer method. Notice that extrema 

for the graph decrease as time increases. This is how the graph should look because the damped 

oscillator’s amplitude should eventually decrease over time. 

 

Fig. 6. Sample FORTRAN code for using Euler-Cromer method 
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Fig. 7. Position vs. time for an undamped oscillator using Euler-Cromer method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Position vs. time for a damped oscillator using the Euler-Cromer method 
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Xold = Xint 
Vold = Vint + Dt * A / 2 
DO I = 1, 250 
X = Xold + dt * Vold 
A = -(C1 * X + C2 * Vold)  
V = Vold + Dt * A 
TimeX = TimeX + Dt  
Timev = TimeX + Dt / 2.  
WRITE (30, 1000) TimeX, X, 
TimeV, V, A 
Xold = X  
Vold = V  

Fig. 9. Sample FORTRAN code for using Feynman-Newton method 

 

 

There is another way to improve the Euler method. Feynman-Newton or half step method 

for solving first order differential equations corrects the problem with the by evaluating the 

function halfway through the interval, instead of at the endpoints. Therefore, the equation for the 

Feynman-Newton method is given by: 

 (4) 

The Feynman-Newton algorithm is also simple to program. Figure 9 shows the loop that one 

could use to implement the Feynman-Newton method in a FORTRAN program. 

 

 

 

 

 

 

 

 

Figure 10 depicts the position versus time for an initial angular displacement of 1º and an 

initial velocity of 0 rad/s that was obtained using the Feynman-Newton method. Notice how the 

graph is relatively stable and that the oscillator’s amplitude does not increase as time increases. 

When one considers a damped oscillator, the Feynman-Newton method also does much better 

than the Euler method. Figure 11 depicts the position versus time for an initial displacement of 

1m and an initial velocity of 0 m/s that was obtained using the Feynman-Newton method. Notice 

that extrema for the graph decrease as time increases. This is how the graph should look because 

the damped oscillator’s amplitude should eventually decrease over time. 
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Fig. 11. Position vs. time for a damped oscillator using the Feynman-Newton method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Position vs. time for an undamped oscillator using Feynman-Newton method 
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We also found exact solutions for the damped and undamped oscillators. We used Maple 

to aid in our finding the exact solution. The undamped oscillator was easy because it is already 

known that an undamped oscillator can be modeled by the equation, 

  (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Steps to find the analytical solution to the undamped oscillator used in the program 
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Fig. 13. Position vs. time for an undamped oscillator using the analytical solution 

 

Figure 12 shows the derivation of this equation for the specific example of the undamped 

oscillator with the initial conditions we used to make the graphs. In order to find the constants 

_C1 and _C2, we found the solution using the auxiliary equation. Then we took the derivative of 

the solution, because we need two equations to find two variables. Since we knew the initial 

position and velocity, we were able to solve the system of equations to find _C1 and _C2. Figure 

13 shows the graph of the analytical solution, a simple cosine wave. Figure 13 shows the graph 

of the position vs. time for the analytical solution.  
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Fig. 14. Position vs. time for a damped oscillator using the analytical solution 

 

 

The analytical solution for the damped oscillator however is more complicated. We used Maple 

to aid in our finding the exact solution. We found that the exact solution of the damped oscillator 

we modeled was, 

 (6) 

Figure 14 shows the graph of the analytical solution. Figure 15 shows the derivation of the 

analytical solution. We found _C1 and _C2 the same way we found them in for the undamped 

oscillator.  
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 From the exact solution we derived for the damped oscillator, we compared each of the 

numerical methods to the exact graph, to see which one is more reliable.  First, we tried the Euler 

method, which we predicted would not follow the exact curve, as shown in Figure 16. 

 

 

 

Fig. 15. Steps to find the analytical solution to the damped oscillator used in the program 
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Notice how the red Euler curve completely diverges from the exact solution. Therefore, 

this numerical method is not reliable for approximating an oscillator. We then tried to compare 

the Euler-Cromer method to the exact solution. We saw a dramatic improvement from the Euler 

graph before, because it does not diverge. Compared to the exact graph however, it also comes 

very close. The Euler-Cromer graph compared to the exact solution is shown in Figure 17. 

 

 

Fig. 16. Position vs. time for a damped oscillator using the analytical solution and Euler method 
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Fig. 17. Position vs. time for a damped oscillator using the analytical solution and Euler-Cromer method 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Then we compared the data from the analytical solution to the data from the Feynman-

Newton method. Compared to the Euler method it was also a very clear improvement. Yet next 

to the Euler-Cromer method, it looks very similar. The comparison of the Feynman-Newton 

method to the analytic solution is shown in Figure 18. 
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Comparing the Euler-Cromer graph next to the Feynman-Newton graph, we noticed a 

little difference in the accuracy of each method, where Feynman-Newton came closer to the 

exact solution. To see this difference in a better light, we took the data of each graph and found 

the absolute value of the difference between the data from the numerical method. Then we 

plotted the data as a function of time, and we saw that the Euler-Cromer method was more 

inaccurate in all of its points, and the Feynman-Newton method diverged less from the exact 

solution.  Figure 19 shows the graph of the differences. 

 

Fig. 18. Position vs. time for a damped oscillator using the analytical solution and Euler-Cromer method 
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Because of our findings, we conclude that out of the three numerical methods, Euler, 

Euler-Cromer, and Feynman-Newton, the Feynman-Newton method best approximates the exact 

solution to both damped and undamped oscillators.  While a smaller time step for each method 

would help to better approximate the analytic solution, the Feynman-Newton method is the most 

efficient, because it does not need as small of a time step, and that takes less computing time.   

  

 

Fig. 19. Difference vs. time comparing the Euler-Cromer method and 

Feynman-Newton method to the analytic solution 

 


