Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function name	Open help page for function
% This is a comment	Comments
Ctrl+c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
disp('text')	Print text
<pre>fprintf('x=%1.2f',x)</pre>	Formatted outputs
whos	List variables
timeit or tictoc	Measure CPU time of codes
profile on/viewer/off	Profile execution time for functions

Defining and Changing Variables	
a = 3	Define variable a to be 3
x = [1, 2, 3]	Set x to be the row vector $\left[1,2,3\right]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2, 3, 4;	Set A to be a 3×4 matrix
5, 6, 7, 8;	
9, 10, 11, 12]	
x(2) = 7	Change x from $\left[1,2,3\right]$ to $\left[1,7,3\right]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Basic Arithmetic and Functions	
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide
3^7	Compute 3^7
sqrt(5)	Compute $\sqrt{5}$
log(3)	Compute $\ln(3)$
log10(100)	Compute $\log_{10}(100)$
abs(-5)	Compute $ -5 $
sin(5*pi/3)	Compute $\sin(5\pi/3)$
floor(3.8)	Compute [3.8]
rem(23,5)	Remainder of 23/5 after division
<pre>integral(fun,a,b)</pre>	Numerical integration of a function
<pre>interp1(x,y,xp)</pre>	1-D data interpolation
<pre>polyfit(x,y,n)</pre>	Polynomial curve fitting
roots(p)	Roots of a Polynomial
fzero(fun,x0)	Root of nonlinear function
ode45/ode15s	ODE solvers

Constructing Matrices and Vectors	
zeros(12, 5)	Make a 12×5 matrix of zeros
ones(12, 5)	Make a 12×5 matrix of ones
eye(5)	Make a 5×5 identity matrix
eye(12, 5)	Make a 12×5 identity matrix
diag(A)	Diagonal matrix or elements
linspace(1.4, 6.3, 1004)	Make a vector with 1004 elements evenly spaced between 1.4 and 6.3
7:15	Row vector of $7, 8, \ldots, 14, 15$
speye(n)	Sparse identity matrix
spdiags(A,d,m,n)	Sparse matrix by columns of A.

Operations	on Matrices and Vectors
3 * x	Multiply every element of x by 3
x + 2	Add 2 to every element of x
x + y	Element-wise addition of two vectors $oldsymbol{x}$ and $oldsymbol{y}$
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ^ 3	Square matrix A to the third power
A .^ 3	Every element of A to the third power
cos(A)	Compute the cosine of every element of ${\cal A}$
abs(A)	Compute the absolute values of every element of ${\cal A}$
Α'	Transpose of A
inv(A)	Compute the inverse of A
det(A)	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
size(A)	Get the sizes of A
length(x)	Get the dimension of \boldsymbol{x}
Fit Switt Iv i	
Entries of Matrices and Vectors	

Entries of Matrices and Vectors	
x(2:12)	The 2^{nd} to the 12^{th} elements of x
x(2:end)	The 2^{nd} to the last elements of x
x(1:3:end)	Every third element of \boldsymbol{x} from the first to last
A(5,:)	Get the 5^{th} row of A
A(:,5)	Get the $5^{ m th}$ column of A
A(5, 1:3)	Get the first to third elements in the 5 th row

2D Plotting	
plot(x,y)	Plot y versus x (must be the same length)
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx(x, y)	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x label')</pre>	Add a label to the x axis
<pre>ylabel('y label')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
axis([xa, xb, ya, yb])	Set the x and y ranges
figure	Start a new plot
<pre>subplot(2,2,index)</pre>	Split the graph into 2*2 parts
<pre>print(filename,'-djpeg')</pre>	Save figure to jpeg format

Special Constants	
pi,exp(1)	$\pi = 3.141592653589793, e = 2.718281828459046$
NaN	Not a number (i.e. $0/0$ or ∞/∞)
Inf	Infinity (e.g., $1/0$)
realmax	Largest positive floating-point number (1.7977e+308)
realmin	Smallest positive floating-point number (2.2251e-308)
eps	Floating-point relative accuracy (2.2204e-16)


```
While loops

1 k = 0;
2 while k < 7
3 k = k + 1;
4 if(k > 5)
5 break; %Terminate execution of for or while loop
6 end
7 end
```

```
2D Plotting
1 x = linspace(-3*pi, 3*pi, 1000);
  y1 = sin(x); y2 = cos(x);
  6 plot(x, y2, 'r-'); % Plot cos(x) as a red line
8 axis([-3*pi, 3*pi, -1.5, 1.5]) % Set the axis limits
9 xlabel('x'); ylabel('y'); % Add axis labels
10 title('A plot of cos(x) and sin(x)'); % Add a title
11 legend('sin(x)', 'cos(x)'); % Add a legend in order
                  A plot of cos(x) and sin(x)
      1.5
                                         sin(x)
cos(x)
      0.5
       0
      -0.5
      -1.5
                 -5
                           0
```

```
Logicals

1 a = 10; % Assign a the value of 10
2 a == 5 % Test if a is equal to 5
3 false
4 a == 10 % Test if a is equal to 10
5 true
6 a >= 5 % Test if a is greater than or equal to 5
7 true
8 a < 11 % Test if a is less than 11
9 true
10 a ~= 4 % Test if a is not equal to 4
11 true
12 a > 1 & 5 & a ~= 10 % Test if a is greater than 1 AND
13 false % not equal to 10
14 a > 1 | | a ~= 10 % Test if a is greater than 1 OR
15 true % not equal to 10
```

```
1 if a > 10
2     disp('Greater than 10');
3 elseif a == 5 %optional
4     disp('a is 5');
5 else %optional
6     disp('Neither condition met');
7 end
```

```
1 [X,Y] = meshgrid(-8:.5:8);

2 R = sqrt(X.'2 + Y.'2) + eps;

3 Z = sin(R)./R;

4 mesh(X,Y,Z)
```

```
MATLAB Reserved Syntax Keywords (can not be redefined by you)

1 break,case,catch,classdef,continue,
2 else,elseif,end,for,function,global,
3 if,otherwise,parfor,persistent,return,
4 spmd,switch,try,while
```