Computational Methods in Optimal Control Lecture 5. Lipschitz Stability and Quadratic Programming

William W. Hager

July 25, 2018

Let us return to the optimization problem

min
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{U}$,

where $\mathcal{U} \subset \mathbb{R}^n$ is a convex set. Let us assume that a local minimizer \mathbf{x}^* exists, f is twice continuously differentiable in a ball $B_r(\mathbf{x}^*)$, and the second derivative is Lipschitz continuous in the ball with Lipschitz constant κ . Moreover, it is assumed that $\mathbf{A} := \nabla^2 f(\mathbf{x}^*)$ is positive definite. Due to the convexity of \mathcal{U} , the first-order optimality condition satisfied by \mathbf{x}^* is

$$\nabla f(\mathbf{x}^*)(\mathbf{x}-\mathbf{x}^*) \geq 0 \quad \text{for all } \mathbf{x} \in \mathcal{U}.$$

The SQP Iteration

If \mathbf{x}_k is the current iterate in the SQP method, then the next iterate \mathbf{x}_{k+1} is given by

$$\begin{aligned} \mathbf{x}_{k+1} &= & \text{arg min } \{Q_k(\mathbf{x}) : \mathbf{x} \in \mathcal{U}\} \\ Q_k(\mathbf{x}) &= & \nabla f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_k)^\mathsf{T} \nabla^2 f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k). \end{aligned}$$

If \mathbf{x}_{k+1} exists, then it satisfies the first-order optimality condition

$$\nabla Q_k(\mathbf{x}_{k+1})(\mathbf{x} - \mathbf{x}_{k+1}) \ge 0$$
 for all $x \in \mathcal{U}$,

where $\nabla Q_k(\mathbf{x}) = \nabla f(\mathbf{x}_k) + (\mathbf{x} - \mathbf{x}_k)^T \nabla^2 f(\mathbf{x}_k)$. Hence, the SQP iterate \mathbf{x}_{k+1} is a solution of the problem: Find $\mathbf{x} \in \mathbb{R}^n$ such that

$$\mathcal{T}(\mathbf{x}) \in \mathcal{F}(\mathbf{x}), \quad \text{where } \mathcal{T}(\mathbf{x}) = \nabla Q_k(\mathbf{x}), \quad \mathcal{F}(\mathbf{x}) = -N_{\mathcal{U}}(\mathbf{x}).$$

A Perturbed Inclusion

If
$$\boldsymbol{\delta} =
abla f(\mathbf{x}^*) - \mathcal{T}(\mathbf{x}^*)$$
, then

$$\mathcal{T}(\mathbf{x}^*) + \boldsymbol{\delta} \in \mathcal{F}(\mathbf{x}^*)$$

by the first-order optimality conditions for \mathbf{x}^* . Let us apply the abstract convergence theorem with $\mathcal{L} = \nabla^2 f(\mathbf{x}^*)$. As explained in Lecture 4, (C3) in the theorem amounts to showing that the following quadratic programming problem has a unique solution depending Lipschitz continuously on \mathbf{y} :

$$\min \ \{\frac{1}{2}\mathbf{z}^{\mathsf{T}}\mathbf{A}\mathbf{z} + \mathbf{y}^{\mathsf{T}}\mathbf{z} : \mathbf{z} \in \mathcal{U}\}, \tag{QP}$$

where $\mathbf{A} = \nabla^2 f(\mathbf{x}^*)$. Since \mathbf{A} is positive definite, the objective function is strongly convex and there exists a unique solution.

Lipschitz Continuity

Let \mathbf{x}_i be the solution of (QP) associated with $\mathbf{y} = \mathbf{y}_i$, i = 1, 2. The first-order optimality condition is

$$(\mathbf{A}\mathbf{x}_i + \mathbf{y}_i)^{\mathsf{T}}(\mathbf{x} - \mathbf{x}_i) \geq 0$$
 for all $\mathbf{x} \in \mathcal{U}$.

Taking $\mathbf{x} = \mathbf{x}_2$ and i = 1, and then $\mathbf{x} = \mathbf{x}_1$ and i = 2 yields

$$(\mathbf{A}\mathbf{x}_1 + \mathbf{y}_1)^{\mathsf{T}}(\mathbf{x}_2 - \mathbf{x}_1) \ge 0$$
 and $(\mathbf{A}\mathbf{x}_2 + \mathbf{y}_2)^{\mathsf{T}}(\mathbf{x}_1 - \mathbf{x}_2) \ge 0$.

Add these inequalities together and rearrange to obtain

$$(y_2 - y_1)^T (x_1 - x_2) \ge (x_1 - x_2)^T A_2 (x_1 - x_2)^T$$

If $1/\gamma$ denotes the smallest eigenvalue of **A**, then

$$\frac{1}{\gamma} \|\mathbf{x}_1 - \mathbf{x}_2\|^2 \le \|\mathbf{y}_1 - \mathbf{y}_2\| \|\mathbf{x}_1 - \mathbf{x}_2\| \Longrightarrow \|\mathbf{x}_1 - \mathbf{x}_2\| \le \gamma \|\mathbf{y}_1 - \mathbf{y}_2\|.$$

Thus the Lipschitz constant of (C3) is the reciprocal of the smallest eigenvalue of A.

A Quadratic Convergence Result

Choose ϵ small enough that $\epsilon \gamma < 1$. Since

$$\mathcal{T}(\mathbf{x}) = \nabla Q_k(\mathbf{x}) = \nabla f(\mathbf{x}_k) + (\mathbf{x} - \mathbf{x}_k)^{\mathsf{T}} \nabla^2 f(\mathbf{x}_k),$$

it follows that $\nabla \mathcal{T} = \nabla^2 f(\mathbf{x}_k)$. In (C2) we want $\|\nabla^2 f(\mathbf{x}_k) - \nabla^2 f(\mathbf{x}^*)\| \le \epsilon$. We require that $\mathbf{x}_k \in B_r(\mathbf{x}^*)$ where r is chosen smaller if necessary so that (C2) holds. Choose r smaller if necessary to ensure that $\nabla^2 f(\mathbf{x}_k)$ is positive definite when $\mathbf{x}_k \in B_r(\mathbf{x}^*)$. Finally, let us analyze δ :

$$\delta = \nabla f(\mathbf{x}^*) - \mathcal{T}(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) - \nabla Q_k(\mathbf{x}^*)$$

$$= \nabla f(\mathbf{x}^*) - \nabla f(\mathbf{x}_k) + (\mathbf{x}^* - \mathbf{x}_k)^{\mathsf{T}} \nabla^2 f(\mathbf{x}_k)$$

$$= (\mathbf{x}^* - \mathbf{x}_k)^{\mathsf{T}} \int_0^1 \left[\nabla^2 f(\mathbf{x}_k + s(\mathbf{x}^* - \mathbf{x}_k)) - \nabla^2 f(\mathbf{x}_k) \right] ds$$

Quadratic Convergence Result Continued ...

Taking the norm and utilizing the Lipschitz continuity of $abla^2 f$ yields

$$\|\boldsymbol{\delta}\| \leq (\kappa/2) \|\mathbf{x}_k - \mathbf{x}^*\|^2.$$

The theorem requires that $\|\boldsymbol{\delta}\| \leq (1 - \gamma \epsilon)r/\gamma$, which is satisfied when

$$(\kappa/2)r^2 \le (1 - \gamma\epsilon)r/\gamma \Longrightarrow r \le 2(1 - \gamma\epsilon)/\gamma,$$

since $\mathbf{x}_k \in B_r(\mathbf{x}^*)$. Thus all the conditions of the abstract convergence theorem hold when r satisfies this bound; it follows that for all $\mathbf{x}_k \in B_r(\mathbf{x}^*)$, the SQP problem has a unique solution \mathbf{x}_{k+1} and

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\| \le \frac{\gamma \kappa}{2(1 - \gamma \epsilon)} \|\mathbf{x}_k - \mathbf{x}^*\|^2.$$

Back to Pseudospectral Method $\theta = (X, U, \Lambda)$

$$\mathcal{T}_{0}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \mathbf{X}_{0} - \mathbf{x}_{0},$$

$$\mathcal{T}_{1i}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \left(\sum_{j=0}^{N} D_{ij} \mathbf{X}_{j}\right) - \mathbf{f}(\mathbf{X}_{i}, \mathbf{U}_{i}), \quad 1 \leq i \leq N,$$

$$\mathcal{T}_{2}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \mathbf{X}_{N+1} - \mathbf{X}_{0} - \sum_{j=1}^{N} \omega_{j} \mathbf{f}(\mathbf{X}_{j}, \mathbf{U}_{j}),$$

$$\mathcal{T}_{3}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \mathbf{\Lambda}_{N+1} - \mathbf{\Lambda}_{0} + \sum_{i=1}^{N} \omega_{i} \nabla_{\mathbf{X}} H(\mathbf{X}_{i}, \mathbf{U}_{i}, \mathbf{\Lambda}_{i}),$$

$$\mathcal{T}_{4i}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \left(\sum_{j=1}^{N+1} D_{ij}^{\dagger} \mathbf{\Lambda}_{j}\right) + \nabla_{\mathbf{X}} H(\mathbf{X}_{i}, \mathbf{U}_{i}, \mathbf{\Lambda}_{i}), \quad 1 \leq i \leq N,$$

$$\mathcal{T}_{5}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = \mathbf{\Lambda}_{N+1} - \nabla C(\mathbf{X}_{N+1}),$$

$$\mathcal{T}_{6i}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}) = -\nabla_{u} H(\mathbf{X}_{i}, \mathbf{U}_{i}, \mathbf{\Lambda}_{i}), \quad 1 \leq i \leq N.$$

R

Abstract Set Up for Pseudospectral Method

 $\mathcal{T}(\mathbf{X},\mathbf{U},\mathbf{\Lambda})\in\mathcal{F}(\mathbf{U})$ where

$$\mathcal{F}_0 = \mathcal{F}_1 = \ldots = \mathcal{F}_5 = \boldsymbol{0}, \quad \text{while } \mathcal{F}_{6i}(\boldsymbol{U}) = \textit{N}_{\mathcal{U}}(\boldsymbol{U}_i).$$

In the abstract theorem, take $\mathcal{L} = \nabla \mathcal{T}(\mathbf{X}^*, \mathbf{U}^*, \mathbf{\Lambda}^*)$. The \mathcal{X} space containing $(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda})$ is $\mathbb{R}^{n(N+2)} \times \mathbb{R}^{mN} \times \mathbb{R}^{n(N+2)}$ with the sup-norm. The \mathcal{Y} space containing $\mathcal{T}(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda})$ is

$$\mathbb{R}^{n} \times \mathbb{R}^{nN} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{nN} \times \mathbb{R}^{n} \times \mathbb{R}^{mN},$$

with the norm

$$\|\mathbf{y}\|_{\mathcal{Y}} = |\mathbf{y}_0| + \|\mathbf{y}_1\|_{\omega} + |\mathbf{y}_2| + |\mathbf{y}_3| + \|\mathbf{y}_4\|_{\omega} + |\mathbf{y}_5| + \|\mathbf{y}_6\|_{\infty}.$$

where

$$\|\mathbf{z}\|_{\omega}^2 = \left(\sum_{i=1}^N \omega_i |\mathbf{z}_i|^2\right)^{1/2}, \quad \mathbf{z} \in \mathbb{R}^{nN}.$$

Lipschitz Property (C3)

Given $\mathbf{Y} \in \mathcal{Y}$, find $(\mathbf{X}, \mathbf{U}, \mathbf{\Lambda})$ such that

$$abla \mathcal{T}(\mathbf{X}^*, \mathbf{U}^*, \mathbf{\Lambda}^*)[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] + \mathbf{Y} \in \mathcal{F}(\mathbf{U}).$$

For each Y, we wish to show that there is a unique (X, U, Λ) satisfying the inclusion, and it depends Lipschitz continuously on Y. Let us define the following matrices:

$$\mathbf{A}(t) = \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}^*(t), \mathbf{u}^*(t)), \qquad \mathbf{B}(t) = \nabla_{\mathbf{u}} \mathbf{f}(\mathbf{x}^*(t), \mathbf{u}^*(t))$$

$$\mathbf{Q}(t) = \nabla_{\mathbf{x}\mathbf{x}} H(\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\lambda}^*(t)), \quad \mathbf{S}(t) = \nabla_{\mathbf{u}\mathbf{x}} H(\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\lambda}^*(t))$$

$$\mathbf{R}(t) = \nabla_{\mathbf{u}\mathbf{u}} H(\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\lambda}^*(t)), \quad \mathbf{T} = \nabla^2 C(\mathbf{x}^*(1))$$

$abla \mathcal{T}(\mathbf{X}^*, \mathbf{U}^*, \mathbf{\Lambda}^*)[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}]$

$$\nabla \mathcal{T}_{1i}^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \left(\sum_{j=1}^N D_{ij} \mathbf{X}_j\right) - \mathbf{A}_i \mathbf{X}_i - \mathbf{B}_i \mathbf{U}_i, \quad 1 \le i \le N,$$

$$\nabla \mathcal{T}^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{X}_{N-1} - \mathbf{X}_0 - \sum_{i=1}^N \exp(\mathbf{\Lambda}_i \mathbf{X}_i + \mathbf{B}_i \mathbf{U}_i)$$

$$abla \mathcal{T}_2^*[\mathbf{X},\mathbf{U},\mathbf{\Lambda}] = \mathbf{X}_{N+1} - \mathbf{X}_0 - \sum_{j=1}^N \omega_j (\mathbf{A}_j \mathbf{X}_j + \mathbf{B}_j \mathbf{U}_j),$$

$$\nabla \mathcal{T}_2^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{X}_{N+1} - \mathbf{X}_0 - \sum_{j=1}^N \omega_j (\mathbf{A}_j \mathbf{X}_j + \mathbf{B}_j \mathbf{U}_j),$$

$$\nabla \mathcal{T}^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{\Lambda}_0 + \sum_{j=1}^N \omega_j (\mathbf{A}_j^\mathsf{T} \mathbf{\Lambda}_j + \mathbf{O}_j \mathbf{X}_j + \mathbf{S}_j \mathbf{U}_j)$$

$$\nabla \mathcal{T}_2^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{X}_{N+1} - \mathbf{X}_0 - \sum_{j=1}^N \omega_j (\mathbf{A}_j \mathbf{X}_j + \mathbf{B}_j \mathbf{U}_j),$$

$$\nabla \mathcal{T}_2^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{\Lambda}_{N+1} - \mathbf{\Lambda}_0 + \sum_{j=1}^N \omega_j (\mathbf{A}_j^T \mathbf{\Lambda}_j + \mathbf{Q}_j \mathbf{X}_j + \mathbf{S}_j \mathbf{U}_j)$$

$$abla \mathcal{T}_2^*[\mathbf{X},\mathbf{U},\mathbf{\Lambda}] = \mathbf{X}_{N+1} - \mathbf{X}_0 - \sum_{j=1}^N \omega_j (\mathbf{A}_j \mathbf{X}_j + \mathbf{B}_j \mathbf{U}_j),$$

$$abla \mathcal{T}_3^*[\mathbf{X},\mathbf{U},\mathbf{\Lambda}] = \mathbf{\Lambda}_{N+1} - \mathbf{\Lambda}_0 + \sum_{j=1}^N \omega_j (\mathbf{A}_j^\mathsf{T} \mathbf{\Lambda}_j + \mathbf{Q}_j \mathbf{X}_j + \mathbf{S}_j \mathbf{U}_j),$$

 $\nabla \mathcal{T}_{5}^{*}[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{\Lambda}_{N+1} - \mathbf{T} \mathbf{X}_{N+1},$

 $\nabla \mathcal{T}_{6i}^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = -(\mathbf{S}_i^\mathsf{T} \mathbf{X}_i + \mathbf{R}_i \mathbf{U}_i + \mathbf{B}_i^\mathsf{T} \mathbf{\Lambda}_i), \quad 1 \leq i \leq N.$

$$\nabla \mathcal{T}_3^*[\mathbf{X}, \mathbf{U}, \mathbf{\Lambda}] = \mathbf{\Lambda}_{N+1} - \mathbf{\Lambda}_0 + \sum_{i=1}^N \omega_j(\mathbf{A}_j^\mathsf{T} \mathbf{\Lambda}_j + \mathbf{Q}_j \mathbf{X}_j + \mathbf{S}_j \mathbf{U}_j),$$

Associated Linear-Quadratic Problem

$$\mathcal{Q}(\mathbf{X}, \mathbf{U}) = \mathbf{X}_{N+1}^{\mathsf{T}} \mathbf{T} \mathbf{X}_{N+1} + \sum_{i=1}^{N} \omega_i \left(\mathbf{X}_i^{\mathsf{T}} \mathbf{Q}_i \mathbf{X}_i + 2 \mathbf{X}_i^{\mathsf{T}} \mathbf{S}_i \mathbf{U}_i + \mathbf{U}_i^{\mathsf{T}} \mathbf{R}_i \mathbf{U}_i \right)$$

$$\mathcal{L}(\mathbf{X}, \mathbf{U}, \mathbf{Y}) = \mathbf{X}_0^{\mathsf{T}} \left(\mathbf{y}_3 - \sum_{i=1}^{N} \omega_i \mathbf{y}_{4i} \right) - \mathbf{y}_5^{\mathsf{T}} \mathbf{X}_{N+1} + \sum_{i=1}^{N} \omega_i \left(\mathbf{y}_{4i}^{\mathsf{T}} \mathbf{X}_i - \mathbf{y}_{6i}^{\mathsf{T}} \mathbf{U}_i \right)$$

New Stuff

Unlike the previous QP, the parameters \mathbf{y}_i also appear in the constraints. We need to solve for \mathbf{X} in terms of \mathbf{U} and the parameter \mathbf{y} . When we substitute for \mathbf{X} in the objective, the QP is a function of \mathbf{U} alone and the constraint is imply $\mathbf{U}_i \in \mathcal{U}$. When the QP is in this form, Lipschitz continuity is derived as before.

Lemma If there exists a constant $0 \le \beta < 1/2$ such that $\|\mathbf{A}_i\|_{\infty} \le \beta$ for all i, then the linear system

$$\left(\sum_{j=1}^{N} D_{ij} \mathbf{X}_{j}\right) - \mathbf{A}_{i} \mathbf{X}_{i} = \mathbf{p}_{i} \quad 1 \leq i \leq N,$$

has a unique solution $\mathbf{X} \in \mathbb{R}^{nN}$, and

$$\|\mathbf{X}\|_{\infty} \leq \left(\frac{\sqrt{2}}{1-2\beta}\right)\|\mathbf{p}\|_{\omega}.$$

Proof

Assume for convenience that n=1 (otherwise Kronecker products needed to reformulate and manipulate the linear system). In this case, the linear system is $\mathbf{DX} - \mathbf{AX} = \mathbf{p}$ where \mathbf{A} is diagonal with i-th diagonal element \mathbf{A}_i and \mathbf{D} is N by N. Will show that \mathbf{D}^{-1} exists and $\|\mathbf{D}^{-1}\|_{\infty} \leq 2$. Hence, we have

$$(\mathbf{I} - \mathbf{D}^{-1}\mathbf{A})\mathbf{X} = \mathbf{D}^{-1}\mathbf{p}.$$

Since $\|\mathbf{D}^{-1}\mathbf{A}\|_{\infty} \leq 2\beta < 1$, the matrix $(\mathbf{I} - \mathbf{D}^{-1}\mathbf{A})$ is invertible and $\|(\mathbf{I} - \mathbf{D}^{-1}\mathbf{A})^{-1}\|_{\infty} \leq 1/(1-2\beta)$. This gives

$$\|\mathbf{X}\|_{\infty} \leq \frac{1}{1-2\beta} \|\mathbf{D}^{-1}\mathbf{p}\|_{\infty} = \frac{1}{1-2\beta} \|(\mathbf{W}^{1/2}\mathbf{D})^{-1}(\mathbf{W}^{1/2}\mathbf{p})\|_{\infty}.$$

The components of $(\mathbf{W}^{1/2}\mathbf{D})^{-1}(\mathbf{W}^{1/2}\mathbf{p})$ are the dot product between the rows of $(\mathbf{W}^{1/2}\mathbf{D})^{-1}$ and $\mathbf{W}^{1/2}\mathbf{p}$. The Euclidean length of $\mathbf{W}^{1/2}\mathbf{p}$ is $\|\mathbf{p}\|_{\omega}$. We will show that the rows of $(\mathbf{W}^{1/2}\mathbf{D})^{-1}$ have length bounded by $\sqrt{2}$.

More on D

Invertibility of **D**: Let $p \in \mathcal{P}_N$ be the polynomial that satisfies p(-1) = 0 and $p(\tau_i) = p_i$, $1 \le i \le N$. If $\mathbf{Dp} = \mathbf{0}$, then $\dot{p}(\tau_i) = 0$, $1 \le i \le N$. Since \dot{p} has degree N-1, we deduce that $\dot{p} = 0$. Since p(-1) = 0, p = 0 which implies that $\mathbf{p} = \mathbf{0}$.

A formula for the inverse of \mathbf{D} : $p \in \mathcal{P}_N$ as above and $\dot{\mathbf{p}}$ denotes vector with components $\dot{p}(\tau_i)$. Expand \dot{p} in a Lagrange basis:

$$\dot{p}(au) = \sum_{j=1}^N \ell_j(au) \dot{p}_j, \quad \ell_j(au) = \prod_{\substack{j=1 \ j \neq i}}^N rac{ au - au_j}{ au_i - au_j}$$

Integrate to obtain

$$p_i = \int_{-1}^{\tau_i} \dot{p}(\tau) \ d\tau = \sum_{i=1}^{N} \left(\int_{-1}^{\tau_i} \ell_j(\tau) \ d\tau \right) \dot{p}_j$$

Comparing to $\mathbf{p} = \mathbf{D}^{-1}\dot{\mathbf{p}}$, we see that $(\mathbf{D}^{-1})_{ij} = \int_{-1}^{\tau_i} \ell_j(\tau) \ d\tau$.

Continue ...

The rows of $(\mathbf{W}^{1/2}\mathbf{D})^{-1}$ have length $\leq \sqrt{2}$ (proof by Xiang-Sheng Wang): Define

$$d_j(au) = \int_{-1}^{ au} \ell_j(au) \ d au \quad \text{and} \quad R(au) = \sum_{j=1}^N rac{d_j(au)^2}{\omega_j}.$$

Observe that $(\mathbf{D}^{-1})_{ij} = d_j(\tau_i)$ and $R(\tau_i)$ is the square of the Euclidean length of row i in $(\mathbf{W}^{1/2}\mathbf{D})^{-1}$. Choose any $s \in [-1,1]$ and let $q \in \mathcal{P}_{N-1}$ be the polynomial defined by

$$q(\tau) = \sum_{j=1}^{N} \frac{d_j(s)\ell_j(\tau)}{\omega_j}.$$

Hence,

$$R(s) = \int_{-1}^{s} q(\tau) \ d\tau \le \int_{-1}^{1} |q(\tau)| \ d\tau \le \sqrt{2} \left(\int_{-1}^{1} q(\tau)^{2} \ d\tau \right)^{1/2}.$$

Continue ...

Since q^2 has degree 2N-2, Gaussian quadrature is exact, and

$$\int_{-1}^{1} q(\tau)^{2} d\tau = \sum_{i=1}^{N} \omega_{i} q(\tau_{i})^{2} = \sum_{i=1}^{N} \frac{d_{i}(s)^{2}}{\omega_{j}} = R(s)$$

since $q(\tau_i) = d_i(s)/\omega_i$. Equating these two expressions for R(s) yields

$$\int_{-1}^1 q(\tau)^2 d\tau \leq 2.$$

It follows that $R(s) \leq 2$, which shows that the rows of $(\mathbf{W}^{1/2}\mathbf{D})^{-1}$ have length $\leq \sqrt{2}$.

 $\|\mathbf{D}^{-1}\|_{\infty} \leq 2$: This follows from the Schwarz inequality and the fact that the quadrature weights sum to 2. If \mathbf{r} is a row from \mathbf{D}^{-1} , then

$$\sum_{i=1}^{N} |r_{i}| = \sum_{i=1}^{N} \sqrt{\omega_{i}} (|r_{i}|/\sqrt{\omega_{i}}) \leq \left(\sum_{i=1}^{N} \omega_{i}\right)^{1/2} \left(\sum_{i=1}^{N} r_{i}^{2}/\omega_{i}\right)^{1/2} \leq 2$$

Lipschitz Continuity (C3)

Lemma. Suppose the following hold:

- (A1) For some $\alpha>0$, the smallest eigenvalue of the Hessian matrices $\nabla^2 C(\mathbf{x}^*(1))$ and $\nabla^2_{(\mathbf{x},u)} H(\mathbf{x}^*(t),\mathbf{u}^*(t),\boldsymbol{\lambda}^*(t))$ are greater than α , uniformly for $t\in[0,1]$.
- (A2) For some $\beta < 1/2$, the Jacobian of the dynamics satisfies

$$\|\nabla_{\mathbf{x}}\mathbf{f}(\mathbf{x}^*(t),\mathbf{u}^*(t))\|_{\infty} \leq \beta$$
 and $\|\nabla_{\mathbf{x}}\mathbf{f}(\mathbf{x}^*(t),\mathbf{u}^*(t))^{\mathsf{T}}\|_{\infty} \leq \beta$

for all $t \in \Omega$ where $\|\cdot\|_{\infty}$ is the matrix sup-norm (largest absolute row sum), and the Jacobian $\nabla_x \mathbf{f}$ is an n by n matrix whose i-th row is $(\nabla_x f_i)^{\mathsf{T}}$.

Then there exists a constant c, independent of N, such that the change $(\Delta \mathbf{X}, \Delta \mathbf{U}, \Delta \mathbf{\Lambda})$ in the solution of linearized problem corresponding to a change $\Delta \mathbf{Y}$ in $\mathbf{Y} \in \mathcal{Y}$ satisfies

$$\max \left\{ \|\Delta \mathbf{X}\|_{\infty}, \|\Delta \mathbf{U}\|_{\infty}, \|\Delta \mathbf{\Lambda}\|_{\infty} \right\} \leq c \|\Delta \mathbf{Y}\|_{\mathcal{Y}}.$$

Analysis of the Residual δ

Recall that the residual had the form

$$oldsymbol{\delta} = \left(egin{array}{ccc} \dot{\mathbf{x}}^*(au_i) - \dot{\mathbf{x}}^I(au_i), & 1 \leq i \leq N, \\ \mathbf{0} & \\ \dot{oldsymbol{\lambda}}^*(au_i) - \dot{oldsymbol{\lambda}}^I(au_i), & 1 \leq i \leq N \\
abla \mathbf{x}^I(1) -
abla \mathbf{x}^*(1) & \\ \mathbf{0} & \end{array}
ight)$$

where $\mathbf{x}^I \in \mathcal{P}_N^n$ satisfies $\mathbf{x}^I(\tau_i) = \mathbf{x}^*(\tau_i)$, $0 \le i \le N$, and where $\lambda^I \in \mathcal{P}_N^n$ satisfies $\lambda^I(\tau_i) = \lambda^*(\tau_i)$, $1 \le i \le N+1$,

Interpolation Error

Lemma. If $u \in \mathcal{H}^{\eta}(\Omega)$ for some $\eta \geq 1$, then there exists a constant c, independent of N and η , such that

$$|u - u'|_{\mathcal{H}^1(\Omega)} \le (c/N)^{p-3/2} |u|_{\mathcal{H}^p(\Omega)}, \quad p = \min\{\eta, N+1\},$$

where $u^I \in \mathcal{P}_N$ is the interpolant of u satisfying $u^I(\tau_i) = u(\tau_i)$, $0 \le i \le N$, and N > 0.

Bernardi and Maday

Apply Interpolation Error to Residual

A bound is needed for $\|\dot{\mathbf{x}}^* - \dot{\mathbf{x}}^I\|_{\omega}$. Let $(\dot{\mathbf{x}})^J \in \mathcal{P}_{N-1}$ denote the polynomial that interpolates $\dot{\mathbf{x}}^*$ at the Gauss points. Then we have

$$\|\dot{\boldsymbol{x}}^* - \dot{\boldsymbol{x}}^I\|_{\omega} = \|(\dot{\boldsymbol{x}}^*)^J - \dot{\boldsymbol{x}}^I\|_{\omega} = \|(\dot{\boldsymbol{x}}^*)^J - \dot{\boldsymbol{x}}^I\|_{\mathcal{L}^2(\Omega)}$$

since Gauss quadrature is exact for polynomials of degree up to 2N-1. Now

$$\begin{aligned} \|(\dot{\mathbf{x}}^*)^J - \dot{\mathbf{x}}^I\|_{\mathcal{L}^2(\Omega)} & \leq & \|(\dot{\mathbf{x}}^*)^J - \dot{\mathbf{x}}^*\|_{\mathcal{L}^2(\Omega)} + \|\dot{\mathbf{x}}^* - \dot{\mathbf{x}}^I\|_{\mathcal{L}^2(\Omega)} \\ & \leq & (c/N)^{p-3/2} |\mathbf{x}^*|_{\mathcal{H}^p(\Omega)}. \end{aligned}$$

Final Result

Theorem. Suppose $(\mathbf{x}^*, \mathbf{u}^*)$ is a local minimizer for the continuous problem with $(\mathbf{x}^*, \boldsymbol{\lambda}^*) \in \mathcal{H}^{\eta}(\Omega; \mathbb{R}^n)$ for some $\eta \geq 2$. If the convexity conditions hold as well as the bounds for $\nabla_x \mathbf{f}$, then for N sufficiently large, the discrete problem has a local minimizer $\mathbf{x}^N \in \mathcal{P}_N^n$ and $\mathbf{u} \in \mathbb{R}^{mN}$, and an associated multiplier $\boldsymbol{\lambda}^N \in \mathcal{P}_N^n$; moreover, there exists a constant c independent of N and η such that

$$\begin{split} \max \left\{ \|\mathbf{X}^N - \mathbf{X}^*\|_{\infty}, \|\mathbf{U}^N - \mathbf{U}^*\|_{\infty}, \|\mathbf{\Lambda}^N - \mathbf{\Lambda}^*\|_{\infty} \right\} \\ &\leq \left(\frac{c}{N}\right)^{p-3/2} \left(|\mathbf{x}^*|_{\mathcal{H}^p(\Omega; \, \mathbb{R}^n)} + |\boldsymbol{\lambda}^*|_{\mathcal{H}^p(\Omega; \, \mathbb{R}^n)} \right), \quad p := \min\{\eta, N+1\}. \end{split}$$