Computational Methods in Optimal Control Lecture 3. More Methods

William W. Hager

July 24, 2018

Range-Kutta Versus Polynomial Approximation

The error associated with Runge-Kutta scheme is often of the form $O(h^p)$, where p>0 is the order of the method (often ≤ 4). Range-Kutta methods achieve convergence as the mesh spacing tends to zero, and attaining a given error tolerance could require a very fine mesh. We now examine purely polynomial-based schemes, which can converge much faster when the solution is smooth. In particular, for a polynomial-based method, the error can be $O(1/N^N)$ where N is the degree of the polynomials.

minimize
$$C(\mathbf{x}(1))$$

subject to
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{u}(t) \in \mathcal{U}, \quad t \in \Omega,$$

$$x(-1) = x_0.$$

- $\Omega = [-1, +1]$, \mathbf{x}_0 given, $\mathbf{x}(t) \in \mathbb{R}^n$,
- $\mathcal{U} \subset \mathbb{R}^m$ closed and convex.
- $\mathbf{f}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and $C: \mathbb{R}^n \to \mathbb{R}$

Discrete Problem: Collocation at Gauss quadrature points

minimize
$$C(\mathbf{x}(1))$$

subject to $\dot{\mathbf{x}}(\tau_i) = \mathbf{f}(\mathbf{x}(\tau_i), \mathbf{u}_i), \quad \mathbf{u}_i \in \mathcal{U}, \quad 1 \leq i \leq N,$
 $\mathbf{x}(-1) = \mathbf{x}_0, \quad \mathbf{x} \in \mathcal{P}_N^n.$

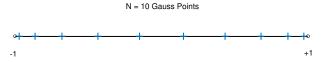
- \mathcal{P}_N = polynomials of degree at most N,
- $\mathcal{P}_N^n = n$ -fold product $\mathcal{P}_N \times \ldots \times \mathcal{P}_N$.
- Gauss quadrature points:

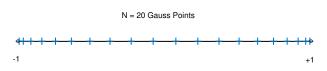
$$-1 < \tau_1 < \tau_2 < \ldots < \tau_N < +1.$$

Additional points in analysis:

$$au_0=-1$$
 and $au_{N+1}=+1$.

The Gauss Points





Lagrange Interpolation and the Differentiation Matrix

• Lagrange interpolating polynomials: For $0 \le j \le N$,

$$\Phi_i(au) = \prod_{\substack{j=0 \ i
eq i}}^N rac{ au - au_j}{ au_i - au_j}, \quad \Phi_i(au_j) = \left\{egin{array}{c} 1 \ ext{for } j = i \ 0 \ ext{otherwise}. \end{array}
ight.$$

If
$$x \in \mathcal{P}_N$$
, then $x(\tau) = \sum_{j=0}^N x(\tau_j) \Phi_j(\tau)$

• Differentiation matrix $\mathbf{D} \in \mathbb{R}^{N \times (N+1)}$

$$\dot{x}(\tau_i) = \sum_{j=0}^N \dot{\Phi}_j(\tau_i) x(\tau_j) = \sum_{j=0}^N D_{ij} x(\tau_j), \quad D_{ij} = \dot{\Phi}_j(\tau_i)$$

Gauss Quadrature

The Gauss collocation points τ_i , $1 \leq i \leq N$, are the roots of the Legendre polynomial P_N of degree N. The associated Gauss quadrature weights ω_i , $1 \leq i \leq N$, are given by

$$\omega_i = \frac{2}{(1 - \tau_i^2) P_N'(\tau_i)^2}.$$
 (1)

For any $p \in \mathcal{P}_{2N-1}$, we have

$$\int_{-1}^{1} p(t) dt = \sum_{i=1}^{N} \omega_{i} p(\tau_{i}).$$
 (2)

If $\mathbf{x} \in \mathcal{P}_N$ and \mathbf{X}_i denotes $x(\tau_i)$, $0 \le i \le N+1$, then

$$\mathbf{X}_{N+1} = \mathbf{x}(1) = \mathbf{x}(-1) + \int_{-1}^{1} \dot{\mathbf{x}}(t) dt = \mathbf{X}_{0} + \sum_{j=1}^{N} \omega_{j} \dot{\mathbf{x}}(\tau_{j}).$$

Convert from \mathcal{P}_N^n to \mathbb{R}^{nN}

NOTE: If $\mathbf{x} \in \mathcal{P}_N^n$ is feasible in the discrete control problem, then $\dot{\mathbf{x}}(\tau_i) = \mathbf{f}(\mathbf{x}(\tau_i), \mathbf{u}_i) = \mathbf{f}(\mathbf{X}_i, \mathbf{U}_i)$; moreover,

$$\dot{\mathbf{x}}(\tau_i) = \sum_{j=0}^N D_{ij} \mathbf{x}(\tau_j) = \dot{\mathbf{x}}(\tau_i) = \sum_{j=0}^N D_{ij} \mathbf{X}_j.$$

Hence, the discrete control problem is equivalent to

minimize
$$C(\mathbf{X}_{N+1})$$

subject to $\sum_{j=0}^{N} D_{ij} \mathbf{X}_j = \mathbf{f}(\mathbf{X}_i, \mathbf{U}_i), \quad \mathbf{U}_i \in \mathcal{U}, \quad 1 \leq i \leq N,$
 $\mathbf{X}_0 = \mathbf{x}_0, \quad \mathbf{X}_{N+1} = \mathbf{X}_0 + \sum_{j=1}^{N} \omega_j \mathbf{f}(\mathbf{X}_j, \mathbf{U}_j).$

Lagrangian and Stationarity

$$C(\mathbf{X}_{N+1}) + \sum_{i=1}^{N} \left\langle \boldsymbol{\mu}_{i}, \mathbf{f}(\mathbf{X}_{i}, \mathbf{U}_{i}) - \sum_{j=0}^{N} D_{ij} \mathbf{X}_{j} \right\rangle + \left\langle \boldsymbol{\mu}_{N+1}, \mathbf{X}_{0} - \mathbf{X}_{N+1} + \sum_{i=1}^{N} \omega_{i} \mathbf{f}(\mathbf{X}_{i}, \mathbf{U}_{i}) \right\rangle.$$

$$\begin{aligned} \mathbf{X}_j & \Rightarrow & \sum_{i=1}^N D_{ij} \boldsymbol{\mu}_i = \nabla_{\mathbf{X}} H(\mathbf{X}_j, \mathbf{U}_j, \boldsymbol{\mu}_j + \omega_j \boldsymbol{\mu}_{N+1}), & 1 \leq j \leq N, \\ \mathbf{X}_{N+1} & \Rightarrow & \boldsymbol{\mu}_{N+1} = \nabla C(\mathbf{X}_{N+1}), \\ \mathbf{U}_i & \Rightarrow & -\nabla_u H\left(\mathbf{X}_i, \mathbf{U}_i, \boldsymbol{\mu}_i + \omega_i \boldsymbol{\mu}_{N+1}\right) \in N_{\mathcal{U}}(\mathbf{U}_i), & 1 \leq i \leq N. \end{aligned}$$

First-order Optimality Conditions

Theorem. The multipliers $\boldsymbol{\mu} \in \mathbb{R}^{n(N+1)}$ satisfy the stationarity conditions if and only if the polynomial $\boldsymbol{\lambda} \in \mathcal{P}_N^n$ for which $\boldsymbol{\lambda}(1) = \boldsymbol{\mu}_{N+1}$ and $\boldsymbol{\lambda}(\tau_i) = \boldsymbol{\mu}_{N+1} + \boldsymbol{\mu}_i/\omega_i$, $1 \leq i \leq N$, also satisfies $\dot{\boldsymbol{\lambda}}(\tau_i) = -\nabla_{\boldsymbol{x}} H\left(\mathbf{x}(\tau_i), \mathbf{u}_i, \boldsymbol{\lambda}(\tau_i)\right), \quad 1 \leq i \leq N, \\ \boldsymbol{\lambda}(1) = \nabla C(\mathbf{x}(1)), \\ \boldsymbol{N}_{\mathcal{U}}(\mathbf{u}_i) \ni -\nabla_{\boldsymbol{u}} H\left(\mathbf{x}(\tau_i), \mathbf{u}_i, \boldsymbol{\lambda}(\tau_i)\right), \quad 1 \leq i \leq N.$

a

The **D**[†] Matrix

Let $\mathbf{W} = \mathsf{diag}(oldsymbol{\omega})$, let $\overline{\mathbf{D}} = \mathbf{D}_{1:N}$, and let \mathbf{D}^\dagger be defined by

$$\overline{\mathbf{D}}^\dagger = -\mathbf{W}^{-1}\overline{\mathbf{D}}\mathbf{W}, \quad \mathbf{D}_{N+1}^\dagger = -\overline{\mathbf{D}}^\dagger \mathbf{1}.$$

If $\lambda \in \mathcal{P}_N^n$ is a polynomial that satisfies the conditions $\lambda(\tau_i) = \Lambda_i$ for $1 \le i \le N+1$, then

$$\sum_{j=1}^{N+1} D_{ij}^{\dagger} \mathbf{\Lambda}_j = \dot{oldsymbol{\lambda}}(au_i), \quad 1 \leq i \leq N.$$

Suppose p and $q \in \mathcal{P}_N$ with p(-1) = q(1) = 0. We have

$$\sum_{i=1}^N \omega_i \dot{p}_i q_i = \int_{-1}^1 \dot{p}(au) q(au) \ d au = - \int_{-1}^1 p(au) \dot{q}(au) \ d au = \sum_{i=1}^N \omega_i p_i \dot{q}_i,$$

where $p_i = p(\tau_i)$, $q_i = q(\tau_i)$, $\dot{p}_i = \dot{p}(\tau_i)$, and $\dot{q}_i = \dot{q}(\tau_i)$. In matrix notation,

$$(\mathbf{W}\overline{\mathbf{D}}\mathbf{p})^{\mathsf{T}}\mathbf{q} = -(\mathbf{W}\mathbf{p})^{\mathsf{T}}\dot{\mathbf{q}} \Longrightarrow \mathbf{p}^{\mathsf{T}}\overline{\mathbf{D}}^{\mathsf{T}}\mathbf{W}\mathbf{q} = -\mathbf{p}^{\mathsf{T}}\mathbf{W}\dot{\mathbf{q}}.$$

where \mathbf{p} , \mathbf{q} , and $\dot{\mathbf{q}}$ are N component vectors. Since this hold for all \mathbf{p} , it follows that

$$\overline{\textbf{D}}^{\mathsf{T}}\textbf{W}\textbf{q} = -\textbf{W}\dot{\textbf{q}} \Longrightarrow \dot{\textbf{q}} = -\textbf{W}^{-1}\overline{\textbf{D}}^{\mathsf{T}}\textbf{W}\textbf{q}.$$

Proof of Theorem

Define $\mathbf{\Lambda}_i = \boldsymbol{\mu}_{N+1} + \boldsymbol{\mu}_i/\omega_i$ for $1 \leq i \leq N$, $\mathbf{\Lambda}_{N+1} = \boldsymbol{\mu}_{N+1}$; Hence, we have $\boldsymbol{\mu}_i = \omega_i(\mathbf{\Lambda}_i - \mathbf{\Lambda}_{N+1})$ for $1 \leq i \leq N$. Substitute for \mathbf{D} in terms of \mathbf{D}^\dagger and for $\boldsymbol{\mu}_i$ to obtain

$$\sum_{j=1}^{N+1} D_{ij}^{\dagger} \mathbf{\Lambda}_{j} = -\nabla_{\mathbf{X}} H(\mathbf{X}_{i}, \mathbf{U}_{i}, \mathbf{\Lambda}_{i}), \quad 1 \leq i \leq N$$

$$\mathbf{\Lambda}_{N+1} = \nabla C(\mathbf{X}_{N+1}),$$

$$N_{\mathcal{U}}(\mathbf{U}_{i}) \ni -\nabla_{u} H(\mathbf{X}_{i}, \mathbf{U}_{i}, \mathbf{\Lambda}_{i}), \quad 1 \leq i \leq N$$

Let $\lambda \in \mathcal{P}_N^n$ be the polynomial that is given by $\lambda(\tau_i) = \Lambda_i$ for $1 \leq i \leq N+1$. Since \mathbf{D}^\dagger is a differentiation matrix, we obtain the theorem.

Review: Continuous Problem

minimize
$$C(\mathbf{x}(1))$$
 subject to $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)), \quad \mathbf{u}(t)\in\mathcal{U}, \quad t\in[-1,1],$ $\mathbf{x}(0)=\mathbf{x}_0$

First-order optimality conditions for a local minimizer:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad \mathbf{u}(t) \in \mathcal{U}, \\ \mathbf{x}(0) &= \mathbf{x}_0 \\ \dot{\boldsymbol{\lambda}}(t) &= -\nabla_{\mathbf{x}} H(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t)), \\ \boldsymbol{\lambda}(1) &= \nabla C(\mathbf{x}(1)) \\ N_{\mathcal{U}}(\mathbf{u}(t)) &\ni -\nabla_{\boldsymbol{u}} H(\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t)) \quad \text{for all } t \in [-1, 1] \end{split}$$

Review: Pseudospectral Method

minimize
$$C(\mathbf{x}(1))$$

subject to $\dot{\mathbf{x}}(\tau_i) = \mathbf{f}(\mathbf{x}(\tau_i), \mathbf{u}_i), \quad \mathbf{u}_i \in \mathcal{U}, \quad 1 \leq i \leq N,$
 $\mathbf{x}(-1) = \mathbf{x}_0, \quad \mathbf{x} \in \mathcal{P}_N^n.$

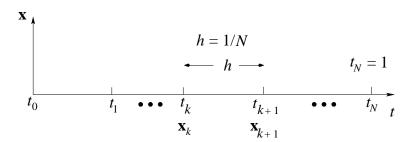
First-order optimality conditions for a local minimizer:

$$\begin{split} \dot{\mathbf{x}}(\tau_i) &= \mathbf{f}(\mathbf{x}(\tau_i), \mathbf{u}_i), \quad \mathbf{u}_i \in \mathcal{U}, \quad 1 \leq i \leq N, \\ \mathbf{x}(-1) &= \mathbf{x}_0, \quad \mathbf{x} \in \mathcal{P}_N^n \\ \dot{\boldsymbol{\lambda}}(\tau_i) &= -\nabla_{\mathbf{x}} H\left(\mathbf{x}(\tau_i), \mathbf{u}_i, \boldsymbol{\lambda}(\tau_i)\right), \quad 1 \leq i \leq N, \quad \boldsymbol{\lambda} \in \mathcal{P}_N^n \\ \boldsymbol{\lambda}(1) &= \nabla C(\mathbf{x}(1)), \\ N_{\mathcal{U}}(\mathbf{u}_i) &\ni -\nabla_{\boldsymbol{u}} H\left(\mathbf{x}(\tau_i), \mathbf{u}_i, \boldsymbol{\lambda}(\tau_i)\right), \quad 1 \leq i \leq N. \end{split}$$

Review: s-stage Runge-Kutta Discretization

minimize
$$C(\mathbf{x}_N)$$

subject to $\mathbf{y}_i = \mathbf{x}_k + h \sum_{j=1}^s a_{ij} \mathbf{f}(\mathbf{y}_j, \mathbf{u}_{kj}), \quad i = 1, \dots, s$
 $\dot{\mathbf{x}}_k = \sum_{i=1}^s b_i \mathbf{f}(\mathbf{y}_i, \mathbf{u}_{ki}), \quad \mathbf{u}_{ki} \in \mathcal{U}$



Review: s-stage Runge-Kutta Discretization

First-order optimality conditions for a local minimizer:

$$\mathbf{y}_{ki} = \mathbf{x}_k + h \sum_{j=1}^s a_{ij} \mathbf{f}(\mathbf{y}_{kj}, \mathbf{u}_{kj}),$$

$$\dot{\mathbf{x}}_k = \sum_{i=1}^s b_i \mathbf{f}(\mathbf{y}_{ki}, \mathbf{u}_{ki}), \quad \mathbf{x}_0 \text{ given}$$

$$\boldsymbol{\lambda}_{ki} = \boldsymbol{\psi}_k - h \sum_{j=1}^s \overline{a}_{ij} \boldsymbol{\lambda}_{kj} \nabla_x \mathbf{f}(\mathbf{y}_{kj}, \mathbf{u}_{kj}), \quad \overline{a}_{ij} = \frac{b_i b_j - b_j a_{ji}}{b_i},$$

$$\dot{\boldsymbol{\psi}}_k = -\sum_{i=1}^s b_i \boldsymbol{\lambda}_{ki} \nabla_x \mathbf{f}(\mathbf{y}_{ki}, \mathbf{u}_{ki}), \quad \boldsymbol{\psi}_N = \nabla C(\mathbf{x}_N),$$

$$N_{\mathcal{U}}(\mathbf{u}_{ki}) \ni -\boldsymbol{\lambda}_{ki} \nabla_u \mathbf{f}(\mathbf{y}_{ki}, \mathbf{u}_{ki})$$

New Model

minimize
$$\int_0^1 g(\mathbf{x}(t),\mathbf{u}(t)) \ dt$$
 subject to
$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{u}(t) \in \mathcal{U}, \quad t \in [0,1],$$

$$\mathbf{x}(0) = \mathbf{x}_0,$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$. Hamiltonian:

$$H(\mathbf{x}, \mathbf{u}, \lambda) = g(\mathbf{x}, \mathbf{u}) + \lambda(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}).$$

First-order optimality conditions for a local minimizer:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{u}(t) \in \mathcal{U}, \\ \dot{\lambda}(t) &= -\left[\lambda(t)\mathbf{A} + \nabla_{\mathbf{x}}g(\mathbf{x}(t),\mathbf{u}(t))\right], \quad \lambda(1) = \mathbf{0} \\ \mathcal{N}_{\mathcal{U}}(\mathbf{u}(t)) &\ni -\left[\lambda(t)\mathbf{B} + \nabla_{u}g(\mathbf{x}(t),\mathbf{u}(t))\right] \quad \text{for all } t \in [0,1] \end{split}$$

Second-order Taylor Expansion of Objective

$$g(\mathbf{x},\mathbf{u}) \approx g_k + \mathcal{L}_k(\mathbf{x} - \mathbf{x}_k, \mathbf{u} - \mathbf{u}_k) + \frac{1}{2}\mathcal{B}_k(\mathbf{x} - \mathbf{x}_k, \mathbf{u} - \mathbf{u}_k)$$

where $\langle \cdot, \cdot \rangle$ denotes L^2 inner product and

$$\mathcal{L}_{k}(\mathbf{x} - \mathbf{x}_{k}, \mathbf{u} - \mathbf{u}_{k}) = \langle \nabla_{x} g_{k}, \mathbf{x} - \mathbf{x}_{k} \rangle + \langle \nabla_{u} g_{k}, \mathbf{u} - \mathbf{u}_{k} \rangle$$

$$\mathcal{B}_{k}(\mathbf{x} - \mathbf{x}_{k}, \mathbf{u} - \mathbf{u}_{k}) = \langle \mathbf{Q}_{k}(\mathbf{x} - \mathbf{x}_{k}), \mathbf{x} - \mathbf{x}_{k} \rangle + 2\langle \mathbf{S}_{k}(\mathbf{x} - \mathbf{x}_{k}), \mathbf{u} - \mathbf{u}_{k} \rangle + \langle \mathbf{R}_{k}(\mathbf{u} - \mathbf{u}_{k}), \mathbf{u} - \mathbf{u}_{k} \rangle$$

$$egin{array}{lll}
abla_{x}g_{k}(t) &=&
abla_{x}g(\mathbf{x}_{k}(t),\mathbf{u}_{k}(t)), &
abla_{u}g_{k}(t) &=&
abla_{u}g(\mathbf{x}_{k}(t),\mathbf{u}_{k}(t)), \\
\mathbf{Q}_{k}(t) &=&
abla_{xx}g(\mathbf{x}_{k}(t),\mathbf{u}_{k}(t)), &
\mathbf{S}_{k}(t) &=&
abla_{ux}g(\mathbf{x}_{k}(t),\mathbf{u}_{k}(t)) \\
\mathbf{R}_{k}(t) &=&
abla_{uu}g(\mathbf{x}_{k}(t),\mathbf{u}_{k}(t)) &
\end{array}$$

Sequential Quadratic Programming (SQP)

Let $(\mathbf{x}_k, \mathbf{u}_k)$ denote the current iterate. In the SQP method, the next iterate is obtained by solving the quadratic programming problem

minimize
$$\mathcal{L}_k(\mathbf{x} - \mathbf{x}_k, \mathbf{u} - \mathbf{u}_k) + \frac{1}{2}\mathcal{B}_k(\mathbf{x} - \mathbf{x}_k, \mathbf{u} - \mathbf{u}_k)$$

subject to $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{u}(t) \in \mathcal{U}, \quad t \in [0, 1].$

At a solution, the first-order optimality conditions hold:

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{x}(0) = \mathbf{x}_0, \quad \mathbf{u}(t) \in \mathcal{U} \\ \dot{\lambda}(t) &= -\left(\lambda(t)\mathbf{A} + \nabla_{\mathbf{x}}g_k(t) + (\mathbf{x}(t) - \mathbf{x}_k(t))^{\mathsf{T}}\mathbf{Q}_k(t) \right. \\ &+ (\mathbf{u}(t) - \mathbf{u}_k(t))^{\mathsf{T}}\mathbf{S}_k(t)\right), \quad \lambda(1) = \mathbf{0} \\ N_{\mathcal{U}}(\mathbf{u}(t)) &\ni -\left(\lambda(t)\mathbf{B} + \nabla_{\mathbf{u}}g_k(t) + [\mathbf{S}_k(t)(\mathbf{x}(t) - \mathbf{x}_k(t))]^{\mathsf{T}} + \right. \\ &\left. \left. [\mathbf{R}_k(t)(\mathbf{u}(t) - \mathbf{u}_k(t))]^{\mathsf{T}}\right) \end{split}$$

SQP Versus Original Optimality Conditions

The optimality conditions for the SQP scheme and for the original control problem are identical except that $\nabla g(\mathbf{x}(t), \mathbf{u}(t))$ in the original first-order optimality conditions is replaced by the first-order Taylor expansion around $(\mathbf{x}_k(t), \mathbf{u}_k(t))$.

Abstractly, the discretizations and algorithms such as SQP amount to the problem:

Find
$$\mathbf{w} \in \mathcal{X}$$
 such that $\mathcal{T}(\mathbf{w}) \in \mathcal{F}(\mathbf{w})$, (D)

where $\mathcal{T}: \mathcal{X} \to \mathcal{Y}$, a normed linear space, and $\mathcal{F}: \mathcal{X} \to 2^{\mathcal{Y}}$. We are given a solution \mathbf{w}^* to the control problem and we wish to bound the distance from \mathbf{w}^* to a solution of (D).

Example: SQP

Take
$$\mathbf{w}=(\mathbf{x},\mathbf{u},\boldsymbol{\lambda})\in W^{1,\infty}\times W^{0,\infty}\times W^{1,\infty}$$
, and

$$\mathcal{T}(\mathbf{w}) = \begin{pmatrix} \dot{\mathbf{x}} - \mathbf{A}\mathbf{x} - \mathbf{B}\mathbf{u} \\ \mathbf{x}(0) - \mathbf{x}_0 \\ \dot{\lambda} + \lambda \mathbf{A} + \nabla_{\mathbf{x}} g_k + (\mathbf{x} - \mathbf{x}_k)^{\mathsf{T}} \mathbf{Q}_k + (\mathbf{u} - \mathbf{u}_k)^{\mathsf{T}} \mathbf{S}_k \\ \lambda(1) \\ - (\lambda \mathbf{B} + \nabla_{u} g_k + [\mathbf{S}_k (\mathbf{x} - \mathbf{x}_k)]^{\mathsf{T}} + [\mathbf{R}_k (\mathbf{u} - \mathbf{u}_k)]^{\mathsf{T}} \end{pmatrix}$$

$$\mathcal{F}(\mathbf{w}) = \left(egin{array}{c} \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ N_{\mathcal{U}}(\mathbf{u}) \end{array}
ight)$$

Example: Pseudospectral Method

Take $\mathbf{w}=(\mathbf{x},\mathbf{u},\boldsymbol{\lambda})\in\mathcal{P}_N^n imes\mathbb{R}^{mN} imes\mathcal{P}_N^n$ and

$$\mathcal{T}(\mathbf{w}) = \begin{pmatrix} \dot{\mathbf{x}}(\tau_i) - \mathbf{f}(\mathbf{x}(\tau_i), \mathbf{u}_i), & 1 \leq i \leq N, \\ \mathbf{x}(-1) - \mathbf{x}_0 \\ \dot{\lambda}(\tau_i) + \nabla_{\mathbf{x}} H(\mathbf{x}(\tau_i), \mathbf{u}_i, \lambda(\tau_i)), & 1 \leq i \leq N \\ \lambda(1) - \nabla C(\mathbf{x}(1)) \\ -\nabla_{u} H(\mathbf{x}(\tau_i), \mathbf{u}_i, \lambda(\tau_i)), & 1 \leq i \leq N \end{pmatrix}$$

$$\mathcal{F}(\mathbf{w}) = \left(egin{array}{ccc} \mathbf{0} & & & & \ & \mathbf{0} & & & \ & \mathbf{0} & & & \ & \mathbf{0} & & & \ & \mathbf{N}_{\mathcal{U}}(\mathbf{u}_i), & 1 \leq i \leq N \end{array}
ight)$$

Test Point w' for Pseudospectral Method

Suppose that $(\mathbf{x}^*, \mathbf{u}^*, \boldsymbol{\lambda}^*)$ satisfies the first-order optimality conditions for the continuous control problem. Let us consider the point $\mathbf{w}^I = (\mathbf{x}^I, \mathbf{u}^I, \boldsymbol{\lambda}^I)$ where \mathbf{x}^I and $\boldsymbol{\lambda}^I \in \mathcal{P}_N^n$, and $\mathbf{u}^I \in \mathbb{R}^{mN}$ satisfy

$$\mathbf{x}^{I}(\tau_{i}) = \mathbf{x}^{*}(\tau_{i}), \quad 0 \leq i \leq N$$

 $\boldsymbol{\lambda}^{I}(\tau_{i}) = \boldsymbol{\lambda}^{*}(\tau_{i}), \quad 1 \leq i \leq N+1$
 $\mathbf{u}_{i}^{I} = \mathbf{u}(\tau_{i}), \quad 1 \leq i \leq N$

By the first-order optimality conditions for the continuous control problem, we have for $1 \le i \le N$:

$$\mathbf{f}(\mathbf{x}^{I}(\tau_{i}), \mathbf{u}_{i}^{I}) = \mathbf{f}(\mathbf{x}^{*}(\tau_{i}), \mathbf{u}^{*}(\tau_{i})) = \dot{\mathbf{x}}^{*}(\tau_{i})
\nabla_{\mathbf{x}} H(\mathbf{x}^{I}(\tau_{i}), \mathbf{u}_{i}^{I}, \lambda^{I}(\tau_{i})) = \nabla_{\mathbf{x}} H(\mathbf{x}^{*}(\tau_{i}), \mathbf{u}^{*}(\tau_{i}), \lambda^{*}(\tau_{i})) = \dot{\lambda}^{*}(\tau_{i}),
\nabla_{\mathbf{u}} H(\mathbf{x}^{I}(\tau_{i}), \mathbf{u}_{i}^{I}, \lambda^{I}(\tau_{i})) = \nabla_{\mathbf{u}} H(\mathbf{x}^{*}(\tau_{i}), \mathbf{u}^{*}(\tau_{i}), \lambda^{*}(\tau_{i}))$$

Residual for Pseudospectral Method

With these substitutions, we have

$$\mathcal{T}(\mathbf{w}^{I}) = \begin{pmatrix} \dot{\mathbf{x}}^{I}(\tau_{i}) - \dot{\mathbf{x}}^{*}(\tau_{i}), & 1 \leq i \leq N, \\ \mathbf{0} & \\ \dot{\lambda}^{I}(\tau_{i}) - \dot{\lambda}^{*}(\tau_{i}), & 1 \leq i \leq N \\ \lambda^{*}(1) - \nabla \mathbf{x}^{I}(1) & \\ -\nabla_{u}H(\mathbf{x}^{*}(\tau_{i}), \mathbf{u}^{*}(\tau_{i}), \lambda^{*}(\tau_{i})), & 1 \leq i \leq N \end{pmatrix}$$

Hence, $\mathcal{T}(\mathbf{w}^I) + \delta \in \mathcal{F}(\mathbf{w}^I)$ where

$$oldsymbol{\delta} = \left(egin{array}{ccc} \dot{\mathbf{x}}^*(au_i) - \dot{\mathbf{x}}^I(au_i), & 1 \leq i \leq N, \\ \mathbf{0} & & \\ \dot{\lambda}^*(au_i) - \dot{\lambda}^I(au_i), & 1 \leq i \leq N, \\
abla \mathbf{x}^I(1) -
abla \mathbf{x}^*(1) & & \\ \mathbf{0} & & & \end{array}
ight)$$

Residual Size

Thus the size of the residual δ depends on difference between the derivative of a polynomial interpolant of either \mathbf{x}^* or λ^* and the true derivative of either \mathbf{x}^* or λ^* .

Residual in SQP

Suppose that $\mathbf{w}^* = (\mathbf{x}^*, \mathbf{u}^*, \boldsymbol{\lambda}^*)$ satisfies the first-order optimality conditions for the continuous control problem. Observe that components 1, 2, and 4 of $\mathcal{T}(\mathbf{w}^*)$ are zero. By the first-order conditions for the continuous problem,

$$\begin{aligned} \dot{\boldsymbol{\lambda}}^* &= & -\nabla_{\boldsymbol{x}} H(\mathbf{x}^*, \mathbf{u}^*, \boldsymbol{\lambda}^*) \\ &= & \nabla_{\boldsymbol{x}} g(\mathbf{x}^*, \mathbf{u}^*) + \boldsymbol{\lambda}^* \mathbf{A} \end{aligned}$$

Hence, we have

$$\mathcal{T}_3(\mathbf{w}^*) = \nabla_{\mathbf{x}} g_k - \nabla_{\mathbf{x}} g_* + (\mathbf{x}^* - \mathbf{x}_k)^\mathsf{T} \mathbf{Q}_k + (\mathbf{u}^* - \mathbf{u}_k)^\mathsf{T} \mathbf{S}_k,$$

which implies that $\mathcal{T}_3(\mathbf{w}^*) + \delta_3 = \mathbf{0}$ where

$$\delta_3 = -\left(\nabla_x g_k - \nabla_x g_* + (\mathbf{x}^* - \mathbf{x}_k)^\mathsf{T} \mathbf{Q}_k + (\mathbf{u}^* - \mathbf{u}_k)^\mathsf{T} \mathbf{S}_k\right).$$

Continued ...

Similary, observe that

$$\mathcal{T}_{5}(\mathbf{w}^{*}) = -(\lambda^{*}\mathbf{B} + \nabla_{u}g_{*} + (\nabla_{u}g_{k} - \nabla_{u}g_{*}) + [\mathbf{S}_{k}(\mathbf{x}^{*} - \mathbf{x}_{k})]^{T} + [\mathbf{R}_{k}(\mathbf{u}^{*} - \mathbf{u}_{k})]^{T})$$

By the first-order optimality conditions for \mathbf{w}^* , we have

$$-\left[oldsymbol{\lambda}^*(t) \mathbf{B} +
abla_u g(\mathbf{x}^*(t), \mathbf{u}^*(t))
ight] \in N_{\mathcal{U}}(\mathbf{u}^*(t)) \quad ext{for all } t \in [0, 1]$$

Hence, if the trailing part of $\mathcal{T}_5(\mathbf{w}^*)$ is deleted, we are left with a vector contained in $N_{\mathcal{U}}(\mathbf{u}^*(t))$. More precisely, $\mathcal{T}_5(\mathbf{w}^*) + \delta_5 \in N_{\mathcal{U}}(\mathbf{u}^*)$ where

$$\delta_5 = \nabla_u g_k - \nabla_u g_* + [\mathbf{S}_k (\mathbf{x}^* - \mathbf{x}_k)]^\mathsf{T} + [\mathbf{R}_k (\mathbf{u}^* - \mathbf{u}_k)]^\mathsf{T}.$$

IN SUMMARY: $\mathcal{T}(\mathbf{w}^*) + \boldsymbol{\delta} \in \mathcal{F}(\mathbf{w}^*)$ where

$$\boldsymbol{\delta} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\left(\nabla_{\mathbf{x}}g_k + (\mathbf{x}^* - \mathbf{x}_k)^\mathsf{T}\mathbf{Q}_k + (\mathbf{u}^* - \mathbf{u}_k)^\mathsf{T}\mathbf{S}_k - \nabla_{\mathbf{x}}g_*\right) \\ \mathbf{0} \\ \nabla_{u}g_k + [\mathbf{S}_k(\mathbf{x}^* - \mathbf{x}_k)]^\mathsf{T} + [\mathbf{R}_k(\mathbf{u}^* - \mathbf{u}_k)]^\mathsf{T} - \nabla_{u}g_* \end{pmatrix}$$

Note that $\nabla_x g_k + (\mathbf{x}^* - \mathbf{x}_k)^\mathsf{T} \mathbf{Q}_k + (\mathbf{u}^* - \mathbf{u}_k)^\mathsf{T} \mathbf{S}_k$ is the first-order Taylor expansion of $\nabla_x g_*$ around $(\mathbf{x}_k, \mathbf{u}_k)$.

GOAL: Obtain bounds for the residual and convert these bounds into error estimates and convergence results