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Abstract. We prove that a large class of Paschke dual algebras of simple

unital C*-algebras are K1-injective. As a consequence, we obtain interest-
ing KK-uniqueness theorems which generalize the Brown–Douglas–Fillmore

essential codimension property.

1. Introduction

In their seminal paper [BDF73, Remark 4.9], Brown, Douglas and Fillmore
(BDF) classified essentially normal operators using Fredholm indices. In the course
of proving functorial properties of their homology Ext(X), BDF introduced the
essential codimension for a pair of projections P,Q ∈ B(`2) whose difference is
compact.

Since that time, the concept of essential codimension has had numerous applica-
tions including the computation of spectral flow in semifinite von Neumann algebras
[BCP+06], as well as the explanation [KL17, Lor19] of unexpected integers arising
in strong sums of projections [KNZ09], diagonals of projections [Kad02], and diag-
onals of normal operators with finite spectrum [Arv07, Jas13, BJ15].

We here present the definition of essential codimension in B(`2), but the trans-
lation to arbitrary semifinite factors is straightforward.

Definition 1.1. Given projections P,Q ∈ B(`2) with P − Q ∈ K, the essential
codimension of Q in P is any of the following equal quantities:

[P : Q] =df


tr(P )− tr(Q) if tr(P ) + tr(Q) <∞,

ind(V ∗W ) if tr(P ) = tr(Q) =∞,
where V ∗V = W ∗W = 1,
V V ∗ = Q,WW ∗ = P,

where ind denotes the Fredholm index. We note that when Q ≤ P , [P : Q] coincides
with the usual codimension of Q in P . Note also that [P : Q] ∈ K0(K).

The fundamental property introduced by Brown–Douglas–Fillmore is encapsu-
lated in the following theorem, whose proof extends easily to semifinite factors (see
[BL12] or [KL17]).

Theorem 1.2. If P,Q ∈ B(`2) are projections with P −Q ∈ K, then [P : Q] = 0
if and only if there is a unitary U ∈ 1 +K conjugating P to Q, i.e., UPU∗ = Q.

It has been recognized that essential codimension can be realized as an element
of KK0(C,K) (or KK0(C,C)) where one identifies [P : Q] with the equivalence
class [φ, ψ] where φ, ψ : C → B(`2) are *-homomorphisms with φ(1) = P and
ψ(1) = Q. This leads to a natural generalization of essential codimension to the
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setting KK0(A,B) where A is a separable nuclear C*-algebra and B is separable
stable C*-algebra, and thus, uniqueness results which generalize Theorem 1.2 (e.g.,
see [Lee11]; see also, [BL12], [Lin02], [DE01], [LN20].)

It turns out that a sufficient condition for such generalizations is theK1-injectivity
of the Paschke dual algebra AdB (see Theorem 2.5), which is a key ingredient in
Paschke duality KKj(A,B) ∼= Kj+1(AdB) for j = 0, 1 (e.g., see [Pas81], [Tho01],
[Val83]). Recall that a unital C*-algebra C is K1-injective if the natural map from
U(C)/U0(C) to K1(C) is injective.
K1-injectivity of the Paschke dual algebra is, in itself, an interesting question.

For example, in the case where A is unital, the Paschke dual algebra is properly
infinite (e.g., see Lemma 2.2), and it is an interesting open question of Blanchard,
Rohde and Rørdam whether every properly infinite unital C*-algebra is K1-injective
([BRR08, Question 2.9]). Consequently, we focus attention on determining condi-
tions on A and B which guarantee that the Paschke dual algebra is K1-injective.

In this paper we continue the investigation [LN20] by the first and second named
authors (itself in the spirit of [Lee11, BL12, Lee13, Lee18]) to obtain generalizations
of Theorem 1.2 in various contexts. One such generalization from [LN20] was:

Theorem 1.3 ([LN20, Theorem 3.5]). Let A be a unital separable simple nuclear
C*-algebra, and B a separable simple stable C*-algebra with a nonzero projection,
strict comparison of positive elements and for which T (B) has finitely many extreme
points. Suppose that there exists a *-embedding A ↪→ B.

Let φ, ψ : A →M(B) be unital trivial full extensions such that φ(a)− ψ(a) ∈ B
for all a ∈ A. Then [φ, ψ] = 0 in KK(A,B) if and only if φ, ψ are properly
asymptotically unitarily equivalent.

See Definition 2.4 for the definition of proper asymptotic unitary equivalence.
Of course, the hypotheses here are quite restrictive, and in this paper we remove
many of these restraints by proving:

Theorem 3.19. Let A, B be separable simple C*-algebras, with A unital and nu-
clear and B stable and Z-stable. Let φ, ψ : A →M(B) be unital trivial full exten-
sions such that φ(a)−ψ(a) ∈ B for all a ∈ A. Then [φ, ψ] = 0 in KK(A,B) if and
only if φ, ψ are properly asymptotically unitarily equivalent.

As previously mentioned, the key to establishing this result, as in [LN20], is to
prove that the Paschke dual algebra AdB — the relative commutant in the corona
algebra C(B) of the image of A under a strongly unital trivial absorbing extension
— is K1-injective. To this end, in Section 2, we fix some notation on extension
theory and the Paschke dual algebra AdB (see Definition 2.1). We review and slightly
improve upon the properties of the Paschke dual algebra developed in [LN20], many
of which are generalizations of results from Paschke’s original paper which was for
the case when B = K. Proposition 2.8 guarantees that AdB is purely infinite when A
is unital separable simple nuclear and either B = K or B is separable stable simple
purely infinite. We conclude Section 2 with Theorem 2.9, which is an abstract
condition on the Paschke dual algebra AdB sufficient to guarantee K1-injectivity;
this is the main tool used in Section 3. This section serves as a short summary
of Paschke dual algebras, and their general properties and consequences, and as a
reference for the future.

In Section 3, we prove that the Paschke dual algebra AdB is K1-injective when
A,B are separable and simple with A unital nuclear and B stable and Z-stable



PASCHKE DUAL ALGEBRA 3

(see Lemma 2.6 and Theorem 3.18). This section is quite technical. This leads to
the uniqueness result (Theorem 3.19). We also have results where the Z-stability
of B is replaced by the hypotheses of strict comparison and that the trace space
T (B) has finitely many extreme points (Theorem 3.23 and Theorem 3.24). The
techniques in this section share many key ideas with those from [LN20], but with
nontrivial modifications.

In this paper, we assume that for separable simple C*-algebras every quasitrace
is a trace.

The reader of this paper should be familiar with many aspects of C*-algebra
theory and K-theory, especially extension theory and KK-theory. It would be
helpful if the reader was also knowledgeable of the basic ideas from the mod-
ern theory of simple nuclear C*-algebras. The reader should be comfortable with
the concepts and computations in the following books and the references therein:
[Dav96, Weg93, Bla98, JT91, Lin01, RLL00]. As examples, here are some con-
cepts used in this paper: absorbing extensions, Busby invariant, Brown–Douglas–
Fillmore theory, essential codimension, KK-groups, K1-injectivity, multiplier and
corona algebras, properly infinite projections, Jiang–Su stability, strict comparison,
cancellation of projections, nuclearity.

2. Paschke duals and uniqueness

We begin by fixing some notation and recalling some basic facts from extension
theory. More detailed references for extension theory can be found in [Weg93,
Bla98]. Given a C*-algebra B, we letM(B) denote the multiplier algebra of B, and
C(B) =df M(B)/B denote the corona algebra of B. Recall that given an extension
of C*-algebras

0→ B → E → A → 0,

one associates the Busby invariant, which is a *-homomorphism φ : A → C(B).
Conversely, given such a *-homomorphism φ : A → C(B), one can obtain an ex-
tension of B by A whose Busby invariant is φ. It is well-known that the extension
corresponding to a given Busby invariant is unique up to strong isomorphism (in
the terminology of Blackadar; see [Bla98, 15.1–15.4]). Our results are all invariant
under strong isomorphism, and therefore we will simply refer to φ : A → C(B) as
an extension.

A trivial extension is one for which the short exact sequence is split exact, or
equivalently, the Busby invariant factors through the quotient map π : M(B) →
C(B) via a *-homomorphism φ0 : A →M(B) so that φ = π ◦ φ0. If φ : A → C(B)
is a trivial extension, then by a slight abuse of terminology we also refer to the
map φ0 as a trivial extension. When A is a unital C*-algebra and φ is a unital
*-homomorphism, we say that φ is a unital extension. If, in addition, φ is trivial
and some lift φ0 is unital, φ is said to be a strongly unital trivial extension. When
φ is injective, then φ is called an essential extension. This corresponds to B being
an essential ideal of E . Two extensions φ, ψ : A → C(B) are said to be unitarily
equivalent (and denoted φ ∼ ψ) if there exists a unitary U ∈M(B) such that

π(U)φ(·)π(U)∗ = ψ(·).

(In the literature, unitary equivalence is sometimes called strong unitary equiva-
lence.)
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Suppose that φ0, ψ0 : A → M(B) are *-homomorphisms. We will sometimes
write φ0 ∼ ψ0 to mean π ◦ φ0 ∼ π ◦ ψ0, i.e., that the corresponding extensions are
unitarily equivalent.

When B is stable, there are isometries V,W ∈M(B) for which V V ∗+WW ∗ = 1.
Given extensions φ, ψ : A → C(B), their BDF sum is the extension

(φ⊕ ψ)(·) =df π(V )φ(·)π(V ∗) + π(W )ψ(·)π(W ∗).

It is not hard to see that the BDF sum is well-defined up to unitary equivalence
(i.e., up to ∼). An extension φ : A → C(B) is absorbing (respectively, unitally
absorbing) if

φ ∼ φ⊕ ψ
for any (respectively, strongly unital) trivial extension ψ. Note that since any ab-
sorbing extension must absorb the zero *-homomorphism, it is necessarily nonunital.
The convention (which we will follow) is that if φ is a unital extension then when
we say that φ is absorbing, we mean that φ is unitally absorbing.

In [Tho01], Thomsen establishes the existence of an absorbing trivial extension
of B by A, when A,B are separable with B stable, and provides several equivalent
characterizations of absorbing trivial extensions. Important precursors to Thom-
sen’s work, which are themselves of interest and give significantly more information,
are contained in [Voi76, Kas80, Lin02, EK01].

In [Pas81], Paschke introduced, for a separable unital C*-algebra A and a unital
trivial essential extension φ : A → B(`2(N)) (which is necessarily absorbing by
Voiculescu’s theorem [Voi76]) the subalgebra (π ◦ φ(A))′ of the Calkin algebra and
proved, in the language of KK-theory, Kj((π◦φ(A))′) ∼= KKj+1(A,C). Soon after
in [Val83], Valette extended these ideas and techniques to a pair of algebras A,B.
In particular, Valette proved [Val83, Proposition 3] that if A is a separable unital
nuclear C*-algebra and B is a stable σ-unital C*-algebra, then Kj((π ◦ φ(A))′) ∼=
KKj+1(A,B), where φ : A →M(B) is a unital absorbing trivial extension. This is
the so-called Paschke duality, and it has been generalized to more general algebras
(e.g., see [Tho01]), but in this paper we focus on the case when A is unital and
nuclear. It is for this reason that this algebra (π ◦φ(A))′ gets its name, the Paschke
dual algebra.

Definition 2.1. Let A,B be separable C*-algebras with A unital and B stable. Let
φ : A → M(B) be a unital absorbing trivial extension. The Paschke dual algebra
AdB is the relative commutant in the corona algebra C(B) of the image of A under

π ◦ φ, i.e., AdB =df

(
π ◦ φ(A)

)′
.

The Paschke dual algebra is independent, up to *-isomorphism, of the choice of
the absorbing (strongly) unital trivial extension φ. Indeed, if φ, ψ : A →M(B) are
unital absorbing trivial extensions, then φ ∼ φ ⊕ ψ ∼ ψ, and so there is a unitary
U ∈ M(B) such that π(U)(π ◦ φ(a))π(U∗) = π ◦ ψ(a) for all a ∈ A. Then this
unitary also conjugates the relative commutants of π ◦ φ(A) and π ◦ ψ(A).

In [LN20], we proved several results about AdB, generalizing those studied by
Paschke for AdK, which we summarize in the next lemma.

Lemma 2.2 ([LN20, Lemma 2.2]). Let A be a unital separable nuclear C*-algebra,
and let B be a separable stable C*-algebra. Then we have the following:

(i) The Paschke dual algebra AdB is properly infinite. In fact, 1⊕ 0 ∼ 1⊕ 1 in
M2 ⊗AdB, i.e., AdB contains a unital copy of the Cuntz algebra O2.
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(ii) Every element of K0(AdB) is represented by a full properly infinite projection
in AdB.

In [LN20], we also provided the following double commutant theorem for the
Paschke dual algebra, which is akin to [Ng18, Theorem 1], and shows that the
algebra AdB is dual in yet another way. This generalizes a remark of Valette [Val83].

Theorem 2.3 ([LN20, Theorem 2.10]). Let A be a separable simple unital nuclear
C*-algebra, and let B be a separable stable simple C*-algebra. For any unital trivial
absorbing extension φ : A →M(B),(

π ◦ φ(A)
)′′

= π ◦ φ(A).

Equivalently, if we identify A with its image π ◦φ(A) (since π ◦φ is injective), and

AdB =df

(
π ◦ φ(A)

)′
, then

A′ = AdB and (AdB)′ = A.

Towards generalizations of Theorem 1.2, we remind the reader of the following
definition due to [DE01].

Definition 2.4. Let A,B be separable C*-algebras, and let φ, ψ : A → M(B) be
*-homomorphisms.
φ and ψ are said to be properly asymptotically unitarily equivalent (φ u ψ) if

there exists a norm continuous path {ut}t∈[0,∞) of unitaries in C1 + B such that

utφ(a)u∗t − ψ(a) ∈ B, for all t

and

‖utφ(a)u∗t − ψ(a)‖ → 0 as t→∞,
for all a ∈ A.

As preparation for the next result, we remark that the corona algebra of a
separable stable C*-algebra is K1-injective (see Lemma 3.25).

The next result says that K1-injectivity of the Paschke dual AdB is sufficient
to guarantee interesting uniqueness theorems which generalize Theorem 1.2. The
proof is already contained in previous works, though often implicitly ([DE01, Lee11,
LN20, Lin02]). As part of the purpose of this section is to provide an accessible
reference, for the convenience of the reader and to help clean up the literature, we
explicitly provide the statement and argument.

Theorem 2.5. Let A be a separable nuclear C*-algebra, and let B be a separable
stable C*-algebra. Suppose that either A is unital and AdB is K1-injective, or A is

nonunital and (Ã)dB is K1-injective. Let φ, ψ : A →M(B) be two absorbing trivial
extensions with φ(a) − ψ(a) ∈ B for all a ∈ A such that either both φ and ψ are
unital or both π ◦ φ and π ◦ ψ are nonunital.

Then [φ, ψ] = 0 in KK(A,B) if and only if φ u ψ.

Proof. The “if” direction follows directly from Lemma 3.3 of [DE01].
We now prove the “only if” direction.
Let A+ denote the unitization of A if A is nonunital, and A⊕ C if A is unital.

Now if φ : A →M(B) is a nonunital absorbing extension (so π◦φ is nonunital), then
φ(A)⊥ contains a projection which is Murray–von Neumann equivalent to 1M(B),

and by [EK01], the map φ+ : A+ →M(B) given by φ+|A = φ and φ+(1) = 1 is a
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unital absorbing trivial extension (i.e., π◦φ+ is unitally absorbing). The same holds
for ψ and ψ+. Moreover, (φ+, ψ+) is a generalized homomorphism. Additionally,
[φ+, ψ+] = 0 because a homotopy of generalized homomorphisms (φs, ψs) between
(φ, ψ) and (0, 0) lifts to a homotopy (φ+

s , ψ
+
s ), and hence [φ+, ψ+] = [0+, 0+] = 0.

Thus, we may assume that A is unital and φ and ψ are unital *-monomorphisms.
As before, we may identify the Paschke dual algebra as AdB = (π◦φ(A))′ ⊆ C(B).
By [LN20, Lemma 3.3] there exists a norm continuous path {ut}t∈[0,∞) of uni-

taries in M(B) such that

utφ(a)u∗t − ψ(a) ∈ B

for all t and for all a ∈ A, and

‖utφ(a)u∗t − ψ(a)‖ → 0

as t→∞, for all a ∈ A.
It is trivial to see that this implies that

[φ, u0φu
∗
0] = [φ, ψ] = 0,

and that π(ut) ∈ (π ◦ φ(A))′ = AdB for all t.
It is well-known that we have a group isomorphismKK(A,B)→ KKHigson(A,B) :

[φ, ψ] → [φ, ψ, 1]. (Here, KKHigson is the version of KK-theory presented in
[Hig87] Section 2.) Hence, [φ, u0φu

∗
0, 1] = 0 in KKHigson(A,B). Hence, by [Hig87,

Lemma 2.3], [φ, φ, u∗0] = 0 in KKHigson(A,B).
By Thomsen’s Paschke duality theorem ([Tho01] Theorem 3.2), there is a group

isomorphism K1(AdB) → KKHigson(A,B) which sends [π(u0)] to [φ, φ, u∗0]. Hence,
[π(u0)] = 0 in K1(AdB). Since AdB is K1-injective, π(u0) ∼h 1 in AdB = (π ◦ φ(A))′.
Hence, there exists a unitary v ∈ C1 + B such that v∗u0 ∼h 1 in π−1(AdB).

Hence, modifying an initial segment of {v∗ut}t∈[0,∞) if necessary, we may assume

that {v∗ut}t∈[0,∞) is a norm continuous path of unitaries in π−1(AdB) such that
v∗u0 = 1.

Now for all t ∈ [0,∞), let αt ∈ Aut(φ(A) + B) be given by αt(x) =df v
∗utxu

∗
t v

for all x ∈ φ(A) +B. Thus, {αt}t∈[0,∞) is a uniformly continuous path of automor-
phisms of φ(A) + B such that α0 = id. Hence, by [DE01, Proposition 2.15] (see
also [Lin02, Theorems 3.2 and 3.4]), there exist a continuous path {vt}t∈[0,∞) of
unitaries in φ(A) + B such that v0 = 1 and ‖vtxv∗t − v∗utxu∗t v‖ → 0 as t→∞ for
all x ∈ φ(A) + B. Thus, ‖vvtxv∗t v∗ − utxu∗t ‖ → 0 as t→∞ for all x ∈ φ(A) + B.

We now proceed as in the last part of the proof of [DE01, Proposition 3.6. Step
1] (see also the proof of [Lin02, Theorem 3.4]). For all t ∈ [0,∞), let at ∈ A and
bt ∈ B such that vvt = φ(at) + bt. Since π ◦ φ is injective, we have that for all t, at
is a unitary in A, and hence, φ(at) is a unitary in φ(A) + B. Note also that since
π ◦φ = π ◦ψ and both maps are injective, ‖ataa∗t − a‖ → 0 as t→∞ for all a ∈ A.
For all t, let wt =df vvtφ(at)

∗ ∈ 1 + B. Then {wt}t∈[0,1) is a norm continuous path
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of unitaries in C1 + B, and for all a ∈ A,

‖wtφ(a)w∗t − ψ(a)‖ ≤ ‖wtφ(a)w∗t − vvtφ(a)v∗t v
∗‖

+ ‖vvtφ(a)v∗t v
∗ − utφ(a)u∗t ‖

+ ‖utφ(a)u∗t − ψ(a)‖
= ‖vvtφ(a∗taat − a)v∗t v

∗‖
+ ‖vvtφ(a)v∗t v

∗ − utφ(a)u∗t ‖
+ ‖utφ(a)u∗t − ψ(a)‖

→ 0. �

Lemma 2.6 ([LN20, Lemma 2.4]). Let A be a unital separable nuclear C*-algebra
and B be a separable stable C*-algebra such that either B ∼= K or B is simple purely
infinite.

Then AdB is K1-injective.

Theorem 2.7. Let A, B be separable C*-algebras such that A is nuclear and either
B ∼= K or B is stable simple purely infinite. Let φ, ψ : A → M(B) be essential
trivial extensions with φ(a)− ψ(a) ∈ B for all a ∈ A such that either both φ and ψ
are unital or both π ◦ φ and π ◦ ψ are nonunital.

Then [φ, ψ] = 0 in KK(A,B) if and only if φ u ψ.

Proof. This follows immediately from Theorem 2.5 and Lemma 2.6.
Of course, we here are using that we are in the “nicest” setting for extension

theory: By our hypotheses on A and B, every essential extension of B by A is
absorbing in the appropriate sense (see, for example, [GN19, Proposition 2.5]). �

Thus, from the point of view of simple stable canonical ideals with appropriate
regularity properties, what remains is the case where the canonical ideal is stably
finite. In [LN20], we had a partial result with restrictive conditions (see the present
paper Theorem 1.3). Part of the goal of the present paper is to remove many of
these restrictive conditions (see the present paper Theorem 3.19).

The next result partially answers a question that Professor Huaxin Lin asked
the second author. The argument actually comes from Lin’s paper [Lin05, Propo-
sition 2.6].

Proposition 2.8. Let A be a unital separable simple nuclear C*-algebra, and let
B be a separable stable C*-algebra such that either

B ∼= K or B is simple purely infinite.

Let σ : A →M(B) be a unital trivial essential extension.
Then (π◦σ(A))′ is simple purely infinite. As a consequence, AdB is simple purely

infinite.

Proof. Note that σ is absorbing (e.g., see [GN19, Proposition 2.5]).
By Lemma 2.2, AdB contains a unital copy of O2, so it cannot be isomorphic to

C. Let c ∈ (π ◦ σ(A))′+ − {0} be arbitrary. We want to find s ∈ (π ◦ σ(A))′ so that
scs∗ = 1.

We may assume that ‖c‖ = 1.
Let

X =df sp(c).
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Let

φ, ψ : C(X)⊗A →M(B)/B
be *-homomorphisms that are given as follows (using the universal property of the
maximal tensor product):

φ : f ⊗ a 7→ f(c)(π ◦ σ(a))

and

ψ : f ⊗ a 7→ f(1)(π ◦ σ(a)).

Both φ and ψ are unital extensions. Since A is simple unital, it is a short exercise
to see that φ is essential. Moreover, one can check that ψ is a strongly unital trivial
extension.

Hence, since either B ∼= K or B is simple purely infinite, we must have that φ is
absorbing (from [GN19, Proposition 2.5]), so

φ ∼ φ⊕ ψ

where ⊕ is the BDF sum, and ∼ is unitary equivalence with unitary coming from
M(B).

So let W ∈M2 ⊗M(B) be such that

W ∗W = 1⊕ 1,

WW ∗ = 1⊕ 0,

and letting w =df π(W )

w∗(φ(·)⊕ 0)w = ψ(·)⊕ φ(·).

Then

w∗(c⊕ 0)w = w∗(φ(idX ⊗1)⊕ 0)w

= ψ(idX ⊗1)⊕ φ(idX ⊗1)

= 1⊕ c.

So [
1 0
0 0

]
w∗(c⊕ 0)w

[
1 0
0 0

]
= 1⊕ 0.

Identifying M(B) with e1,1 ⊗M(B), we may view w

[
1 0
0 0

]
as an element of

C(B). Hence, from the above computation, to finish the proof, it suffices to prove
that

w

[
1 0
0 0

]
∈ (π ◦ σ(A))′.

But for all a ∈ A,

w∗(π ◦ σ(a)⊕ 0)w = w∗(φ(1⊗ a)⊕ 0)w

= ψ(1⊗ a)⊕ φ(1⊗ a)

= π ◦ σ(a)⊕ π ◦ σ(a).

So

(π ◦ σ(a)⊕ 0)w = w(π ◦ σ(a)⊕ π ◦ σ(a))

for all a ∈ A.
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Since ww∗ = 1⊕ 0,

(π ◦ σ(a)⊕ π ◦ σ(a))w = w(π ◦ σ(a)⊕ π ◦ σ(a))

for all a ∈ A.
Hence,

w ∈M2 ⊗ (π ◦ σ(A))′.

Hence,

w

[
1 0
0 0

]
∈ (π ◦ σ(A))′

as required. �

Our next result establishes a generic sufficient criterion for establishing the K1-
injectivity of the Paschke dual algebra. It is the key technique used in the next
section.

Let C ⊆ D be an inclusion of C*-algebras. Recall that C is said to be strongly full
in D if every nonzero element of C is full in D, i.e., for all y ∈ C−{0}, IdealD(y) = D.
Recall also that an element x ∈ D is said to be strongly full in D if C∗(x) is strongly
full in D. Finally, an extension φ : A → C(B) is said to be full if φ is essential and
φ(A) is strongly full in C(B).

We remark on a key fact we use in the proof: if A is a unital separable nu-
clear C*-algebra and B is a separable stable with the corona factorization property
(CFP), then every unital full extension of B by A is absorbing [KN06]. Many sep-
arable simple stable C*-algebras have the corona factorization property, including
all such C*-algebras with strict comparison of positive elements, and also all such
C*-algebras which are purely infinite (see [OPR11, OPR12]).

Theorem 2.9. Suppose that A,B are separable C*-algebras with A unital, simple
and nuclear, and B stable and has the corona factorization property.

Suppose that φ : A → M(B) is a unital trivial absorbing extension and realize
AdB as (π ◦φ(A))′. If every unitary in the Paschke dual algebra AdB is homotopic in
AdB to a unitary which is strongly full in C(B), then AdB is K1-injective. Moreover,
for each n ∈ N, the map

U(Mn ⊗AdB)/U(Mn ⊗AdB)0 → U(M2n ⊗AdB)/U(M2n ⊗AdB)0

given by

[u] 7→ [u⊕ 1]

is injective.

Proof. Clearly, K1-injectivity will follow from the more specific statement. By
Lemma 2.2, AdB contains a unital copy of O2, and so 1 ⊕ 1 ∼ 1. Therefore, for all
n ∈ N, AdB ∼= Mn ⊗AdB. Hence it suffices to establish injectivity for the map in the
n = 1 case:

U(AdB)/U(AdB)0 → U(M2 ⊗AdB)/U(M2 ⊗AdB)0.

Let u ∈ AdB be a unitary for which

u⊕ 1 ∼h 1⊕ 1

in M2 ⊗AdB.
By hypothesis, u is homotopic, in AdB, to a unitary which is strongly full in C(B).

Therefore, we may assume, without loss of generality, that u is strongly full in C(B).
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By [LN20, Lemma 2.6], C∗(π◦φ(A), u) is strongly full in C(B). Hence, the inclusion
map

ı : C∗(π ◦ φ(A), u) ↪→ C(B)

is a full extension. Since B has the corona factorization property, and since C∗(π ◦
φ(A), u) is nuclear (being a quotient of C(S1)⊗A), ı is a unital absorbing extension.

Let σ : C∗(π ◦ φ(A), u) →M(B) be a unital trivial absorbing extension. Since
the restriction σ|π◦φ(A) is also a unital trivial absorbing extension, conjugating σ
by a unitary if necessary, we may assume that the restriction of π ◦ σ to π ◦ φ(A)
is the identity map.

By [LN20, Lemma 2.3],

π ◦ σ(u) ∼h 1

in AdB.
Since ı is absorbing,

ı⊕ (π ◦ σ) ∼ ı.

Consequently, there is an isometry ṽ ∈ M2 ⊗ M(B) such that ṽ∗ṽ = 1 ⊕ 1,
ṽṽ∗ = 1⊕ 0, and for v =df π(ṽ),

v(ı⊕ (π ◦ σ))v∗ = ı⊕ 0.

Therefore,

v(a⊕ a)v∗ = a⊕ 0

for all a ∈ π ◦ φ(A), and also

v(u⊕ (π ◦ σ(u)))v∗ = u⊕ 0.

Thus, since vv∗ = 1⊕ 0,

v(a⊕ a) = (a⊕ 0)v = (a⊕ a)v.

for all a ∈ π ◦ φ(A), and therefore,

v ∈M2 ⊗AdB.

Moreover, we also have

u⊕ (π ◦ σ(u)) ∼h u⊕ 1 ∼h 1⊕ 1

within M2 ⊗AdB. Conjugating this continuous path of unitaries by v, we obtain

u ∼h 1

within AdB. �

3. The Paschke dual for simple nuclear C*-algebras

In this section, we prove our main result that the Paschke dual algebra AdB is K1

injective, when A, B are separable simple C*-algebras with A unital and nuclear,
and B stable and Z-stable. Since this section is very long and technical, we begin
by providing a rough summary of the main ideas of the argument. We advise the
reader to read this summary first and to use it as a guide while going through the
technical details.

The main strategy of our argument is to use Theorem 2.9. For this, for some
unital trivial absorbing extension φ : A →M(B), it suffices to show that given any
U ∈ AdB := (π ◦ φ(A))′ there is a unitary V homotopic to 1 in AdB such that V U is
strongly full in C(B).
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Firstly, we summarize what we did in the paper [LN20] because the argument
is simpler, and understanding it should help the reader better comprehend our
modifications necessary for the current argument. In [LN20], we assumed that A,
B were separable simple C*-algebras with A unital and nuclear, B stable and having
strict comparison, T (B) having finitely many extreme points, and for which there
exists an embedding ρ : A ↪→ B. Let p =df ρ(1A) ∈ B. Then there exists a sequence
{pk}∞k=0 of pairwise orthogonal projections in B such that

p0 = p and pj ∼ pk for all j, k,

and
∞∑
k=0

pk = 1M(B),

where the sum converges strictly in M(B). For all j ≥ 0, let vj ∈ B be a partial
isometry in B for which v∗j vj = p0 and vjv

∗
j = pj . Let φ : A →M(B) be the unital

*-monomorphism given by

φ(a) =df

∞∑
j=0

vjρ(a)v∗j .

Then φ is a (unitally) absorbing extension. (This is the Lin extension.) We re-
alize the Paschke dual algebra as AdB = (π ◦ φ(A))′. Following the strategy of
Theorem 2.9, given a unitary U ∈ AdB, we want to find a unitary V ∈ AdB, which
is homotopic to 1 in AdB, such that V U is strongly full in C(B). Notice that by
our concrete choice of φ, for every diagonal unitary of the form Z =df

∑∞
j=0 αjpj

(αj ∈ S1), V =df π(Z) ∈ AdB and π(Z) is a unitary which is homotopic to 1AdB
in AdB. Using that B has strict comparison and T (B) has finitely many extreme
points, we showed that we could choose αj ∈ S1 so that π(Z)U is strongly full
in C(B). This complicated argument can be simply (and misleadingly) described
as choosing {αj} so that we could “distribute mass over the spectrum of π(Z)U .”
Since U was arbitrary, by applying Theorem 2.9, we have that AdB is K1 injective.

We emphasize that the assumptions made in [LN20] were highly restrictive. That
A is assumed to be unitally embedded into B is a great constraint, since, first of
all this implies that B has a nonzero projection, and in the theory of simple C*-
algebras, there are many interesting regular C*-algebras B which have no projection
other than zero. More seriously, this rules out whole categories of examples — for
instance, the case where A is purely infinite and B is stably finite. The requirement
that T (B) has finite extreme boundary is another enormous constraint, since we
know that every metrizable Choquet simplex can be realized as T (B). Note that
this last requirement was used for our method for getting strong fullness of π(Z)U .

In the present paper, we remove the aforementioned restrictions with the addi-
tional assumption of Jiang–Su or Z-stability of B. We mention here (and in a few
paragraphs) that Jiang–Su stability is mainly used as a tool to remove the finite
extreme boundary condition on T (B). The other restrictions can be removed with-
out Jiang–Su stability. In fact, say that φ : A →M(B) is a unital trivial absorbing
extension (and we do not assume that B is Z-stable). Let {en}∞n=1 be an approx-
imate unit for B with en+1en = en for all n and which quasicentralizes φ(A) “fast
enough” (as in Lemma 3.2 for a countable dense subset of φ(A)), and let {αn}∞n=1

be a sequence in S1 which has a “close neighbors” property |αn − αn+1| → 0. Then
by Lemmas 3.2 and 3.21, if we define Z =df

∑∞
n=1 αn(en − en−1), then π(Z) is a
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unitary in (π ◦ φ(A))′ = AdB. Note that {en} need not consist of projections and
Z itself need not be a unitary. Moreover, we can choose the sequence {αn} so that
π(Z) is homotopic to 1 in (π ◦ φ(A))′. Note that here, there are no assumptions
that A be embeddable in B, nor that B has a nonzero projection. In fact, we can
even start with an arbitrary absorbing extension φ (and not one in a specific form
like the Lin extension). The problem arises when trying to choose the sequence
{αn} so that π(Z)U will be strongly full. (This is a problem of “distributing mass
over the spectrum of π(Z)U”.) With this approach, we would need that T (B) have
finite extreme boundary.

Thus, we need to use a more sophisticated approach with the additional assump-
tion that B be Z-stable. Since B ∼= B ⊗ Z, we work with B ⊗ Z. Firstly, in the
new approach, we can again realize the Paschke dual algebra AdB using an arbitrary
unital absorbing trivial extension φ : A →M(B ⊗Z). (So AdB = (π ◦ φ(A))′.) The
operator Z ∈M(B ⊗ Z) that we construct will have the complicated form

(3.1) Z =

∞∑
k=1

uk((ek − ek−1)⊗ zk)u∗k,

where {en} is an approximate unit for B with en+1en = en for all n, zk ∈ Z is a
unitary and uk ∈M(B)⊗Z is a unitary for all k. These operators will have further
properties to be specified below.

To ensure that π(Z) is a unitary, we need to impose conditions on the uk and
zk in (3.1). This is essentially Lemma 3.1, which generalizes the “close neighbors”
condition of Lemma 3.21. Note that, again, {en} need not consist of projections
and Z itself need not be a unitary.

To ensure that π(Z) ∈ (π ◦ φ(A))′ = AdB, we will require that {en} quasicentral-
izes a certain set “quickly enough”, but also, we are forced to use the Z-stability
property. The complicated main result for this is Lemma 3.6, which again imposes
conditions on the uk, zk, and ek. We here roughly summarize some of the key
ingredients to Lemma 3.6:

(i) From standard results about Z-stable C*-algebras, we get *-monomorphisms
ι,Φ : B → B ⊗ Z for which ι has special form ι = idB ⊗ 1Z and Φ is a *-
isomorphism, and we get a sequence of unitaries {un} in M(B)⊗Z which
witnesses that ι and Φ are approximately unitarily equivalent (Lemma 3.4).
Moreover, there are unique injective strictly lower semicontinuous exten-
sions M(B)→M(B ⊗Z), which we also denote by ι, Φ respectively (here
the extension Φ will also be an isomorphism).

(ii) Let S0 ⊆ M(B ⊗ Z) be a countable set which is dense in φ(A), and let
S =df Φ−1(S0) ⊆ M(B). We require that {en} quasicentralizes S at a
“fast rate” as in Lemma 3.2.

(iii) We use Theorem 3.3, which says that, up to a compact element (i.e., element
in B ⊗ Z), every positive operator in M(B ⊗ Z) is a sum of two diagonal
operators (with diagonal entries in B ⊗ Z). A key fact is that by (i) (or
Lemma 3.4), for each entry b (in either one of the diagonals), there exists
b′ ∈ B such that unbu

∗
n → b′ ⊗ 1Z .

(iv) The above (i), (ii) and (iii) are the main inputs for getting an operator
Z, as in (3.1) so that π(Z) ∈ (π ◦ φ(A))′ = AdB. As mentioned, the main
technique is summarized in Lemma 3.6.
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It is not hard to see that, with appropriate modification, π(Z) ∼h 1 in (π ◦ φ(A))′.
More precisely, one moves to 1 by a path that connects the zk to 1Z . Thus, there
are further restrictions on the zk which will be chosen to be the unitaries vΛ ∈ Dd.d.
which are described two paragraphs before Lemma 3.7.

Finally, we need to ensure that π(Z)U is strongly full. As mentioned before,
this is the main reason that we require Z-stability (without which, we require
the highly restrictive condition that T (B) has finite extreme boundary), and thus,
this is also the main reason for the complicated definition of Z in (3.1) and the
complicated conditions to establish π(Z) ∈ AdB in Lemma 3.6 (as discussed in the
previous paragraph). The main results establishing strong fullness are Lemmas 3.16
and 3.17. Perhaps the most technical lemmas in the paper (Lemmas 3.7 to 3.15) are
preliminary results that lead to the central results Lemmas 3.16 and 3.17. Here is a
rough intuition: To establish strong fullness is a matter of “distributing mass over
the spectrum of π(Z)U” (or, since we have strict comparison, “distributing tracial
mass”). In the setting of our previous paper [LN20], since Z has the form of a
diagonal

∑
j αjpj and since we have only freedom to vary the constants αj , we can

only “distribute mass vertically” and must assume the restrictive condition that
T (B) has finite extreme boundary. But now that we have Z-stability of B, and now
that Z has the form (3.1), we have an “extra direction” and can now “distribute the
mass horizontally (along Z) as well as vertically”. In particular, in the expression
(3.1), the unitaries zk allow us to “distribute the mass horizontally” and allow us to
achieve the crucial step Lemma 3.16 with arbitrary metrizable Choquet simplexes
T (B). Finally, recall that we will be choosing the zk to have the form vΛ ∈ Dd.d.
as in two paragraphs before Lemma 3.7.

The above are the main ideas of the argument for K1 injectivity of AdB. We finish
with some extra remarks, which maybe helpful to the reader. Firstly, the technical
Lemmas 3.7 to 3.15 are essentially at the level of “hard exercises” in elementary
operator theory; however, because of the complexity due to many factors, we have
opted to write out the details, thus lengthening the paper. The reader may want
to skip these results on the first reading. Next, because of the generality of our
result, there are many additional complicating technical details. For instance, we
note that in (3.1), the sum, for Z, is not even a finite sum of diagonal operators.
However, it has sufficiently nice structure for us to be able to work with it; in
particular, the sum is an element of S, where S is the collection of operators
defined in the paragraph before Lemma 3.7; nonetheless, this leads to an extra
layer of complications in our computations. Finally, we actually prove a result
that is slightly more general than what we need to apply Theorem 2.9 and get K1-
injectivity of AdB. We actually prove the following: Say that U ∈ C(B) is a unitary
(not necessarily in (π ◦ φ(A))′ = AdB). Then we can find an operator Z ∈ M(B)
such that π(Z) is a unitary in AdB, π(Z) ∼h 1 in AdB, and π(Z)U is strongly full in
C(B).

As a further guide, we describe how each lemma contributes to the outline de-
scribed above.

• Lemma 3.1 is used to show that the image of (3.1) in the corona algebra is
unitary.

• Lemmas 3.2 and 3.4 to 3.6 and Theorem 3.3 are used to establish that the
unitary we construct lies in AdB := (π ◦ φ(A))′, as well as setting up some
of the structure involving the Z-stability of B.



14 JIREH LOREAUX, P. W. NG, AND ARINDAM SUTRADHAR

• Lemmas 3.7 and 3.8 are the foundational results to establish strong fullness.
• Lemmas 3.9 to 3.15 are technical strict topology arguments involving Lau-

rent polynonmials and approximate units.
• Lemma 3.16 combines Lemmas 3.7 and 3.8 and Lemmas 3.9 to 3.15 in order

to provide the key stepping stone to strong fullness.
• Lemma 3.17 puts all of the above together to construct the desired unitary
π(Z) ∈ AdB which is homotopic to 1 in AdB for which π(Z)U is strongly full
in C(B).

We note that, until Lemma 3.16, we do not use Lemmas 3.1, 3.2 and 3.4 to 3.6
and Theorem 3.3 except at the notation at the beginning of Subsection 3.1 (or
before Lemma 3.7). In particular, we don’t use Lemma 3.6 until Lemma 3.17.

We firstly fix some notation, which will be used for the rest of this paper. For
a separable simple C*-algebra B and for a nonzero element e ∈ Ped(B)+ (the
Pedersen ideal of B), we let Te(B) denote the set of all densely defined, norm-lower
semicontinuous traces τ on B+ such that τ(e) = 1. Recall that Te(B), with the
topology of pointwise convergence on Ped(B), is a compact convex set. In fact, it is
a Choquet simplex. All the results and arguments in this paper are independent of
the choice of normalizing element e ∈ Ped(B)+ − {0}. Hence, we will usually drop
the e and simply write T (B). Recall also, that every τ ∈ T (B) extends uniquely to
a strictly lower semicontinuous trace M(B)+ → [0,∞], which we will also denote
by “τ”.

Recall next that for all τ ∈ T (B) and for any a ∈M(B)+,

dτ (a) =df lim
n→∞

τ(a1/n) ∈ [0,∞].

For δ > 0, let fδ : [0,∞)→ [0, 1] be the unique continuous function for which

fδ(t) =


1 t ∈ [δ,∞)

0 t = 0

linear on [0, δ].

In what follows, for elements a, b in a C*-algebra, we use a ≈ε b to denote
‖a− b‖ < ε.

Lemma 3.1. Let B be a nonunital σ-unital C*-algebra, and let {ek} be an approx-
imate unit for B for which

ek+1ek = ek

for all k. Let E be a unital C*-algebra and let {fk} be an approximate unit for B⊗E
for which

fk+1fk = fk

for all k.
Let {uk} be a sequence of unitaries in B ⊗ E, {zk} be a sequence of unitaries in

E, and let {εk} be a sequence in (0, 1) for which
∑∞
k=1 εk <∞.

Suppose that

(3.2) uk(ej ⊗ 1)u∗k ≈εk fj
for all j ≤ k, and suppose that for all ε > 0, there exists an N ≥ 1 where for all
k ≥ N , either

uk = uk+1 and ‖zk − zk+1‖ < ε.
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or

zk = zk+1 ∈ C1E .

Let

u =df

∞∑
k=1

uk((ek − ek−1)⊗ zk)u∗k

where the sum converges strictly in M(B ⊗ E) (and where e0 =df 0).
Then π(u) is a unitary in C(B ⊗ E).

Proof. Note that the sum defining u converges strictly because of (3.2). Let rk =df

ek − ek−1, and notice that the condition en+1en = en implies by induction (and
positivity of en) that enek = ek = eken for all n > k. Consequently, rkrn = rnrk,
and if |n− k| > 1, then rkrn = 0. Of course, this also holds for sk =df fk − fk−1.

By hypothesis,

uk(rk ⊗ 1)u∗k ≈2εk sk.

Now,

uk(rk ⊗ zk)u∗k = uk(rk ⊗ 1)(1⊗ zk)u∗k ≈2εk skuk(1⊗ zk)u∗k,

and similarly,

uk(rk ⊗ zk)u∗k = uk(1⊗ zk)(rk ⊗ 1)u∗k ≈2εk uk(1⊗ zk)u∗ksk,

Therefore, there exist contractions vk ∈ sk(B ⊗ E)sk for which

vk ≈12εk uk(rk ⊗ zk)u∗k.

Since sksn = 0 = snsk whenever |n− k| > 1, we also know vkvn = 0 = vnvk
whenever |n− k| > 1.

Moreover, for the strictly converging sum v =df

∑∞
k=1 vk, we know that for all

N ,

π(v) = π

( ∞∑
k=N

vk

)
, and π(u) = π

( ∞∑
k=N

uk(rk ⊗ zk)u∗k

)
.

Because∥∥∥∥∥
∞∑
k=N

vk −
∞∑
k=N

uk(rk ⊗ zk)u∗k

∥∥∥∥∥ ≤
∞∑
k=N

‖vk − uk(rk ⊗ zk)u∗k‖ ≤
∞∑
k=N

12inniεk → 0,

as N →∞, we obtain π(v) = π(u).
Consequently,

π(u)π(u)∗ = π(vv∗) = π

( ∞∑
k=1

vk

) ∞∑
j=1

v∗j


= π

( ∞∑
k=1

vkv
∗
k + vkv

∗
k+1 + vk+1v

∗
k

)

= π

( ∞∑
k=1

s2
k + vkv

∗
k+1 + vk+1v

∗
k

)
,

where the last inequality follows from an argument similar to the one which shows
π(v) = π(u) along with the estimate

vkv
∗
k ≈24εk uk(rk⊗zk)u∗kuk(rk⊗z∗k)u∗k = uk(rk⊗zk)(rk⊗z∗k)u∗k = uk(r2

k⊗1)u∗k ≈4εk s
2
k.
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We also have the estimate

vkv
∗
k+1 ≈24εk+1

uk(rk ⊗ zk)u∗kuk+1(rk+1 ⊗ z∗k+1)u∗k+1.

Let ε > 0, and by hypothesis there is some N such that for all k ≥ N , either
uk = uk+1 and ‖zk − zk+1‖ < ε, or zk = zk+1 ∈ C1E .

In the former case, uk = uk+1 and ‖zkz∗k+1 − 1‖ < ε and so,

uk(rk ⊗ zk)u∗kuk+1(rk+1 ⊗ z∗k+1)u∗k+1 = uk+1(rkrk+1 ⊗ zkz∗k+1)u∗k+1

≈ε uk+1(rkrk+1 ⊗ 1)u∗k+1

≈4εk+1
sksk+1.

In the latter case, zk = zk+1 ∈ C1E we we find

uk(rk ⊗ zk)u∗kuk+1(rk+1 ⊗ z∗k+1)u∗k+1 = uk(rk ⊗ 1)u∗kuk+1(rk+1 ⊗ 1)u∗k+1

≈4εk+1
sksk+1.

Increasing N if necessary to ensure that εk < ε for all k ≥ N , then we obtain

‖vkv∗k+1 − sksk+1‖ ≤ 24εk+1 + ε+ 4εk+1 < 29ε.

This leads to the following estimate on the norm of the sum∥∥∥∥∥
∞∑

k=2N

vkv
∗
k+1 − sksk+1

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑
k=N

v2kv
∗
2k+1 − s2ks2k+1

∥∥∥∥∥
+

∥∥∥∥∥
∞∑
k=N

v2k+1v
∗
2k+2 − s2k+1s2k+2

∥∥∥∥∥
≤ sup
k≥N
‖v2kv

∗
2k+1 − s2ks2k+1‖

+ sup
k≥N
‖v2k+1v

∗
2k+2 − s2k+1s2k+2‖

≤ 58ε,

where the second inequality follows because v2kv
∗
2k+1 − s2ks2k+1 live in orthogonal

subalgebras as k varies, and similarly for v2k+1v
∗
2k+2 − s2k+1s2k+2.

Since {fk} is an approximate unit for B ⊗ E ,
∑∞
k=1 sk = 1 with convergence in

the strict topology. Therefore,

1 = 12 =

∞∑
k=1

s2
k + 2sksk+1.

Finally, we note that

π(uu∗ − 1) = π

( ∞∑
k=1

(s2
k + vkv

∗
k+1 + vk+1v

∗
k)− (s2

k + 2sksk+1)

)

= π

( ∞∑
k=2N

vkv
∗
k+1 + vk+1v

∗
k − 2sksk+1

)
.

Therefore,

‖π(uu∗ − 1)‖ ≤

∥∥∥∥∥
∞∑
k=N

vkv
∗
k+1 + vk+1v

∗
k − 2sksk+1

∥∥∥∥∥ ≤ 116ε.
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Since ε is arbitrary, ‖π(uu∗ − 1)‖ = 0. The same argument applied to u∗ proves
‖π(u∗u− 1)‖ = 0, and hence π(u) is unitary in C(B ⊗ E). �

The next computation should be well-known, but we provide it for the conve-
nience of the reader.

Lemma 3.2. Let B be a nonunital σ-unital simple C*-algebra, and let S =df {xk |
k ≥ 1} ⊆ M(B) be a countable set.

Then there exists an approximate unit {en} for B such that

en+1en = en

for all n, and {en} quasicentralizes S in the following strong sense: For all n, for
all 1 ≤ k ≤ n,

‖enxk − xken‖ <
1

2n
.

Moreover, for any {en} as above, we have that

π

( ∞∑
n=1

αn(en − en−1)

)
∈ π(S)′

for every bounded sequence {αn} of complex numbers.

Proof. Let S =df {xk : k ≥ 1}.
Let {en} be an approximate unit for B such that

en+1en = en

for all n, and {en} quasicentralizes {xk} (see [Ped90, Theorem 2.2]); that is, for all
k,

‖enxk − xken‖ → 0

as n→∞.
Passing to a subsequence of {en} if necessary, we may assume that for all n, for

all 1 ≤ k ≤ n,

‖enxk − xken‖ <
1

2n
.

For all n, let

rn =df en − en−1.

Then, for each k ∈ N let bk =df

∑∞
n=k+1 αnrn, and notice

xkbk − bkxk =

∞∑
n=k+1

αn
(
(xken − enxk) + (en−1xk − xken−1)

)
.

But for n > k,

‖(xken − enxk) + (en−1xk − xken−1)‖ ≤ 3

2n
,

and the sequence αn is bounded. Hence the sum representing xkbk−bkxk converges
in norm, so xkbk−bkxk ∈ B. Consequently, xk (

∑∞
n=1 αnrn)−(

∑∞
n=1 αnrn)xk ∈ B,

and therefore π (
∑∞
n=1 αn(en − en−1)) commutes with each π(xk). �

We will need to use the following bidiagonal decomposition theorem:
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Theorem 3.3. Let B be a σ-unital C*-algebra, and let {en}∞n=1 be an approximate
unit for B for which

en+1en = en

for all n ≥ 1.
Let F ⊂ M(B) be a finite collection of positive elements and let ε > 0 be given.

Then there exist two subsequences {mk} and {nk} of the nonnegative integers with

nk+1 < mk < nk+2 < mk+1

for all k such that for all X ∈ F , there exists a bounded sequence {dk} of positive
elements of B, and there exists some b ∈ BSA such that the following statements
are true:

(i) X =
∑∞
k=1 dk + b, where the sum converges strictly.

(ii) ‖b‖ < ε.

(iii) dk ∈ (emk − enk)B(emk − enk), for all k.

In the above, we define n1 =df 0 and e0 =df 0.
Note that the above implies that for all |k− l| ≥ 2, dk ⊥ dl. I.e., the above series

is a bidiagonal series.

Proof. This is from [KNZ17] Theorem 4.2, Remark 4.3 and their proofs. �

The Jiang–Su algebra Z [JS99] is the unique simple unital nonelementary induc-
tive limit of dimension drop algebras with K-theory invariant being the same as
the complex numbers C, i.e.,

(K0(Z),K0(Z)+,K1(Z), T (Z)) = (Z,Z+, 0, {pt}) = (K0(C),K0(C)+,K1(C), T (C)).

We let τZ denote the unique tracial state of Z.
Like the complex numbers C, Z ⊗Z ∼= Z. A C*-algebra D is said to be Z-stable

(or Jiang–Su-stable) if D ∼= D⊗Z. Jiang–Su-stability is a regularity property which
is an axiom in the classification program for simple amenable C*-algebras. Indeed,
if B is a simple Z-stable C*-algebra, then either B is stably finite or purely infinite.
Also, if B is an exact simple Z-stable C*-algebra, then B has strict comparison of
positive elements; that is, for every a, b ∈ (B ⊗ K)+,

if dτ (a) < dτ (b) or dτ (b) =∞, ∀τ ∈ T (B), then a � b.

In fact, for simple separable nuclear C*-algebras, it is a question whether Z-stability
is equivalent to strict comparison of positive elements.

Good references for the Jiang–Su algebra and some of its basic properties are
[JS99, GJS00, Rø04].

Lemma 3.4. Let B be a Z-stable C*-algebra and let ι : B → B ⊗ Z be the *-
embedding given by

ι : d 7→ d⊗ 1Z .

Then there exists a *-isomorphism Φ : B → B ⊗ Z such that ι and Φ are ap-
proximately unitarily equivalent, i.e., there exists a sequence {un} of unitaries in
M(B ⊗ Z) for which

unι(a)u∗n → Φ(a)

for all a ∈ B.

Proof. This follows from [JS99] Theorems 7.6 and 8.7. �
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Lemma 3.5. Let B be a σ-unital Z-stable C*-algebra and let ι,Φ, and {un} be as
in Lemma 3.4.
ι (respectively Φ) extends uniquely to a *-embedding (respectively *-isomorphism)

M(B) ↪→ M(B ⊗ Z) which is strictly continuous on bounded sets, which we also
denote by ι (respectively Φ).

Then

unι(X)u∗n → Φ(X)

and

u∗nΦ(X)un → ι(X)

in the strict topology on M(B ⊗ Z), for all X ∈M(B).

Proof. Let {en} be an approximate unit for B for which

en+1en = en

for all n.
For all n, let fn =df Φ(en) ∈ B⊗Z. Then {fn} is an approximate unit for B⊗Z

and

fn+1fn = fn

for all n.
Let X ∈ M(B) be arbitrary. We may assume that X ≥ 0 and ‖X‖ = 1. Let

ε > 0 be given, and let N ≥ 1 be given.
By Theorem 3.3, there exist to subsequences {mk} and {nk} of the nonnegative

integers with

nk+1 < mk < nk+2 < mk+1

for all k, such that there exists a sequence {dk} of positive contractive elements of
B and b ∈ B for which the following statements are true:

i. X =
∑∞
k=1 dk + b where the sum converges strictly.

ii. ‖b‖ < ε
10 .

iii. dk ∈ herB(emk − enk), for all k.

Choose K ≥ 1 so that nK > N + 1.
Choose L ≥ 1 so that for all l ≥ L

ul

(
K+1∑
k=1

dk ⊗ 1

)
u∗l ≈ ε

10

K+1∑
k=1

Φ(dk)

and

ul(emK ⊗ 1)u∗l ≈ ε
10
fmK .

So for all l ≥ L,
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ul

( ∞∑
k=1

dk ⊗ 1

)
u∗l fN = ul

( ∞∑
k=1

dk ⊗ 1

)
u∗l fmKfN

≈ ε
10
ul

( ∞∑
k=1

dk ⊗ 1

)
(emK ⊗ 1)u∗l fN

= ul

(
K+1∑
k=1

dk ⊗ 1

)
(emK ⊗ 1)u∗l fN

≈ ε
5

K+1∑
k=1

Φ(dk)fN

=

∞∑
k=1

Φ(dk)fN

= Φ

( ∞∑
k=1

dk

)
fN .

Since ‖b‖ < ε
10 , for all l ≥ L,

ulι(X)u∗l fN ≈ε Φ(X)fN .

Taking the adjoint of the above, we have that for all l ≥ L,

fNulι(X)u∗l ≈ε fNΦ(X).

By a similar argument, we can find L′ ≥ 1 such that for all l ≥ L′,

ι(X)(eN ⊗ 1) ≈ε u∗l Φ(X)ul(eN ⊗ 1)

and

(eN ⊗ 1)ι(X) ≈ε (eN ⊗ 1)u∗l Φ(X)ul.

Since ε,N,X were arbitrary, we are done. �

The next lemma is our key result for constructing a unitary in the Paschke dual.
We refer to it in order to establish notation in Subsection 3.1 but we do not use it
again until Lemma 3.17.

Lemma 3.6. Let B be a nonunital σ-unital simple Z-stable C*-algebra, and let
ι,Φ, and {uk} be as in Lemma 3.4. Let S0 ⊆M(B⊗Z) be a countable subset, and
let {en} be an approximate unit for B which quasicentralizes S =df Φ−1(S0) as in
Lemma 3.2.

Let F ⊆ S0 be a finite subset. Then for every ε > 0, there exists an N ≥ 1 such
that for all n ≥ N and for all L ≥ 1, there exists K ≥ 1 where for all contractive
elements z0, ...., zL ∈ Z, and for all k ≥ K,uk

 L∑
j=0

(en+j − en+j−1)⊗ zj

u∗k, X

 ≈ε 0

for all X ∈ F .
In the above, we are using the standard additive commutator [x, y] =df xy − yx.
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Proof. Let Φ−1(F) =df {X1, ..., XM}. We may assume that each Xj is positive and
has norm one.

Choose N ≥ 1 so that
∞∑

j=N−1

1

2j
<

ε

20
.

By Lemma 3.2, for all n′ ≥ N − 1, for all 1 ≤ j ≤M ,

‖en′Xj −Xjen′‖ <
1

2n′
.

Now let n ≥ N and L ≥ 1 be given.
Hence, for all 1 ≤ l ≤M ,

(3.3)

 L∑
j=0

(en+j − en+j−1)⊗ zj , Xl ⊗ 1

 ≈ ε
20

0.

For all n′, let

fn′ =df Φ(en′).

By Lemma 3.5, choose K ≥ 1 such that for all k ≥ K, for all 1 ≤ l ≤ M , and
for all 0 ≤ n′ ≤ nL + 2,

uk(Xl ⊗ 1)u∗kfn′ ≈ ε
10(L+1)

Φ(Xl)fn′

and

uk(en′ ⊗ 1)u∗k ≈ ε
10(L+1)

fn′ .

Then for all k ≥ K, conjugating (3.3) by uk, we have that L∑
j=0

uk((en+j − en+j−1)⊗ zj)u∗k,Φ(Xl)

 ≈ε 0.

�

3.1. Technical lemmas. For this subsection, we begin with a series of technical
lemmas which are used exclusively to prove Lemma 3.17. In a first reading of this
paper, after reading the standing assumptions and notations which immediately fol-
low, the reader may wish to skip directly to Lemma 3.17 (the Lemmas 3.9 to 3.16
are especially technical).

We next fix some notation which will be used for the rest of this sub-
section (3.1). We present this notation here, since it is only for this
subsection.

Let B be a nonunital separable simple stable and Z-stable C*-algebra. Let

ι,Φ : B → B ⊗Z

be the *-monomorphisms and {uk} a sequence of unitaries in M(B ⊗ Z) as in
Lemma 3.4, and, as in Lemma 3.5, we use the same notation to denote the strictly
continuous (on bounded sets) extensions

ι,Φ :M(B)→M(B ⊗ Z).
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We fix a strictly decreasing sequence {εj} in (0, 1) for which

∞∑
j=1

εj < 1.

Let S0 ⊂M(B ⊗ Z) be a countable set of contractions. Let {ek} be an approx-
imate unit for B which quasicentralizes S =df Φ−1(S0) as in Lemma 3.2. Say that
S0 can be enumerated as S0 =df {T ′j}∞j=1. For each k ≥ 1, plug {T ′1, ..., T ′k} and εk
into Lemma 3.6 to get an integer N ′k ≥ 1. We may assume that {N ′k} is strictly
increasing and hence, is a subsequence of the positive integers.

For all k, let

fk =df Φ(ek) ∈ B ⊗ Z.
Note that {fk} is an approximate unit for B ⊗ Z which quasicentralizes S0 and
fkfk+1 = fk for all k ∈ N.

For all k, let

rk =df ek − ek−1

and

sk =df fk − fk−1,

and for all m ≤ n, let

rm,n =df

n∑
k=m

rk =

n∑
k=m

(ek − ek−1) = en − em−1

and

sm,n =df

n∑
k=m

sk = fn − fm−1.

Note that neither the ek, fk, rk nor the sk need to be projections.
Let U ∈ C(B ⊗ Z) be a unitary and let T ∈ M(B ⊗ Z) be a contraction such

that

π(T ) = U.

Also, we let B(0, 1) denote the closed unit ball of the complex plane, i.e.,

B(0, 1) =df {α ∈ C : |α| ≤ 1}.
Recall also that a Laurent polynomial on the punctured closed disk B(0, 1)−{0}

is a continuous function h : B(0, 1)− {0} → C which has the form

h(λ) =

N∑
n=0

βnλ
n +

M∑
m=1

γmλ
m

for all λ ∈ B(0, 1)− {0}. Here, M,N ≥ 1 are integers and βn, γm ∈ C.
In what follows, we will use that the algebra of Laurent polynomials, when

restricted to the circle S1, is uniformly dense in C(S1).
Next, if C is a unital C*-algebra and h is a Laurent polynomial as above, then

for all contractive x ∈ C, we define

h(x) =df

N∑
n=0

βnx
n +

M∑
m=1

γm(x∗)m.

This is well-defined by the uniqueness of Laurent series expansion. Note that when
x is a unitary, this is consistent with the continuous functional calculus.



PASCHKE DUAL ALGEBRA 23

For a real-valued function f , we let osupp(f) =df f
−1(R \ {0}) denote the open

support of f . Of course, osupp(f) = supp(f).
We have a unital C*-subalgebra Dd.d. ⊂ Z which is a dimension-drop algebra,

such that the spectrum D̂d.d. = [0, 1]. Moreover, we can assume that the Borel
probability measure µτZ on [0, 1], induced by τZ is Lebesgue measure. See [JS99]
for reference to the properties listed above and others.

For each n ≥ 1, let In,1, ..., In,n, I
′
n,1, ..., I

′
n,n, I

′′
n,1, ..., I

′′
n,n be open subintervals of

[0, 1] such that

sup In,j < inf In,j+1 for all n, j,

0, 1 /∈ In,j and In,j ∩ In,k = ∅ for all j 6= k,

I ′′n,j ⊂ I
′
n,j ⊂ I ′n,j ⊂ In,j for all j,

and

µτZ (I ′′n,j) >
1

2n
for all j.

For each n ≥ 1 and 1 ≤ j ≤ n, let zn,j , z
′
n,j : [0, 1] → [0, 1] be continuous

functions for which

(3.4) osupp(z′n,j) = I ′n,j and z′n,j(t) = 1 for all t ∈ I ′′n,j ,

and also,

(3.5) osupp(zn,j) = In,j and zn,j(t) = 1 for all t ∈ I ′n,j and j.

Clearly,

zn,j , z
′
n,j ∈ Dd.d. ⊂ Z.

Note that for all n, j,

τZ(z′n,j) ≥
1

2n
and zn,jz

′
n,j = z′n,j .

Let λ1, . . . , λm ∈ [0, 1) and suppose that

0 ≤ λ1 < λ2 < · · · < λm.

Let

Λ =df (λ1, . . . , λm).

Define a positive element hΛ ∈ Dd.d. ⊂ Z such that

hΛ(0) = 0, and hΛ(1) < 1.

and hΛ is increasing

hΛ(t) = λj for all t ∈ Im,j , and 1 ≤ j ≤ m.

Then the unitary vΛ ∈ Dd.d. ⊂ Z defined by

vΛ =df e
2πihΛ

is path-connected to 1 via a norm-continuous path of unitaries vΛ,s := e2πi(1−s)hΛ ∈
Dd.d. (0 ≤ s ≤ 1) with length at most 2π.
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Let S ⊂ M(B ⊗ Z) consist of all strict converging sums of the form
∑∞
j=1 aj ,

where for all j, aj ∈ B ⊗ Z is a contractive element for which

dist(aj , (fj − fj−1)(B ⊗ Z)(fj − fj−1)) < εj .

Note that for every
∑
j aj ∈ S, ∥∥∥∥∑

j

aj

∥∥∥∥ < 3.

Lemma 3.7. Suppose that B is stably finite. Let ε > 0 be given. Let A1, ..., An, A
′
1, ...A

′
n ∈

M(B)+ be contractive elements such that Ideal{A′1, ..., A′n} =M(B) and

Aj(A
′
j)

1/l ≈ε (A′j)
1/l

for all l ≥ 1.
Then for every contractive positive element a0 ∈ B ⊗ Z, there exists an element

x ∈ B ⊗ Z with ‖x‖ ≤ 2.
such that

x

 n∑
j=1

Aj ⊗ zn,j

x∗ ≈2ε a0.

Proof. We may assume that ε < 1
10 .

We have that

τ

 n∑
j=1

A′j ⊗ 1Z

 =∞

for all τ ∈ T (B ⊗ Z).
Hence,

τ

 n∑
j=1

A′j ⊗ z′n,j

 =∞

for all τ ∈ T (B ⊗ Z).
Let us simplify notation by letting

A′ =df

n∑
j=1

A′j ⊗ z′n,j

and

A =df

n∑
j=1

Aj ⊗ zn,j .

Note that A,A′ ∈M(B)+ are contractive elements for which

A(A′)1/l ≈ε (A′)1/l

for all l ≥ 1.
Hence, if a ∈ A′(B ⊗ Z)A′ is any strictly positive element,

dτ (a) =∞.
Hence, since B ⊗ Z has strict comparison,

a0 � a.
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Hence, there exists y ∈ B ⊗ Z for which

a0 ≈ ε
10
yA′y∗.

Note that
‖y(A′)1/2‖2 ≈ ε

10
‖a0‖ ≤ 1.

Choose L ≥ 1 so that for all l ≥ L,

y(A′)1/2(A′)1/l ≈ ε
10
y(A′)1/2.

Taking

x =df y(A′)1/2(A′)
1

2L ,

we have that
‖x‖ ≤ 2

and
xAx∗ ≈5ε a0

as required. �

Lemma 3.8. Suppose that A,A′, A′′ ∈ C(B)+ are contractive elements and δ > 0
such that

AA′ = A′

and
A′′ ∈ her((A′ − δ)+).

Let A0 ∈M(B) be any contractive lift of A, and let ε > 0 be given.

Then for every M ≥ 0, there exists an A′′0 ∈ (1− eM )M(B)(1− eM ) which is a
contractive positive lift of A′′ such that for all l ≥ 1,

A0(A′′0)1/l ≈ε (A′′0)1/l ≈ε (A′′0)1/lA0.

Proof. The proof is exactly the same as that of [LN20] Lemma 4.1, except that eM
is no longer a projection and e⊥M is replaced with 1− eM . �

All the Lemmas 3.9 to 3.16 are technical and messy lemmas used only in the
proof of Lemma 3.17. We introduce some new terminology for these lemmas: A
series

∑
j aj ∈ S is standard if aj ∈ herB⊗Z(sj) for all j.

Lemma 3.9.

(i) For every ε > 0, for every X ∈ M(B ⊗ Z), for every m ≥ 1, there exists
an L ≥ 1 such that

fmXfL ≈ε fmX.
(ii) For every m ≥ 1, there exists an L ≥ 1 such for every standard X ∈ S,

fmXfL = fmX.

(In particular, L ≥ m+ 2 will do.)
(iii) For every m,n ≥ 1, for every ε > 0, for any finite collection Y1, . . . , Yl ∈

M(B⊗Z), there exist m1, . . . ,mn, L such that for all X1, . . . , Xn ∈M(B⊗
Z) where for all 1 ≤ j ≤ n, either Xj = Yi for some 1 ≤ i ≤ l, or Xj ∈ S
is standard,

fmX1X2 · · ·Xn ≈ε fmX1fm1
X2fm2

· · ·Xnfmn ,

and
fmX1X2 · · ·Xn(1− fL) ≈ε 0.
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Proof.

(i) Immediate since fmX ∈ B ⊗ Z and {fk} is an approximate unit.
(ii) Immediate because fk+1fk = fk for all k, and since X is standard, fmX ∈

herB⊗Z(fm+1).
(iii) Proceed by induction on n to establish that for every ε > 0, there is a

sequence m1, . . . ,mn such that

fmX1X2 · · ·Xn ≈ε fmX1fm1
X2fm2

· · ·Xnfmn .

To finish the proof, set L =df mn + 2.
For the base case, let ε > 0, and obtain L1, . . . , Ll by applying (i) to each

Yi, 1 ≤ i ≤ l. Then setting m1 =df max{m+ 2, L1, . . . , Ll} is sufficient.
For the inductive step, let ε > 0, and set B =df max{3, ‖Y1‖, . . . , ‖Yl‖},

and suppose that we have m1, . . . ,mk such that

fmX1X2 · · ·Xk ≈ ε
2B

fmX1fm1
X2fm2

· · ·Xkfmk .

Then apply the base case to obtain mk+1 such that

fmkXk+1 ≈ ε

2Bk
fmkXk+1fmk+1

.

Therefore,

fmX1X2 · · ·Xk+1 ≈ ε
2
fmX1fm1

X2fm2
· · ·XkfmkXk+1

≈ ε
2
fmX1fm1X2fm2 · · ·XkfmkXk+1fmk+1

,

completing the inductive step. �

Lemma 3.10. Let X ∈M(B⊗Z) and let b ∈ B⊗Z be arbitrary. For every n ≥ 1
and every ε > 0 and every L′ ≥ 1 and every finite collection Y1, . . . , Yl ∈M(B⊗Z),
there exists an L ≥ 1 such that if X1, . . . , Xn, X

′
1, . . . , X

′
n ∈ M(B ⊗ Z), where for

every 1 ≤ j ≤ n,

(i) either Xj = X ′j = Yi for some 1 ≤ i ≤ l,
(ii) or Xj , X

′
j ∈ S is standard, and Xj(1− fL′) = X ′j(1− fL′),

then

X1 · · ·Xn(1− fL) ≈ε X ′1 · · ·X ′n(1− fL).

Proof. Proceed by induction on n. The base case is trivial because we may select
L = L′, independent of ε.

For the inductive step, suppose that for k ∈ N and ε > 0, and suppose that we
have L′′ such that

X1 · · ·Xk(1− fL′′) ≈ ε
2B

X ′1 · · ·X ′k(1− fL′′).

By Lemma 3.9, there is an L′′′ (depending only on ε, k and Y1, . . . , Yl) for which

fL′′X
′
k+1 ≈ ε

2Bk
fL′′X

′
k+1fL′′′
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Then

X1 · · ·XkXk+1

= X1 · · ·XkX
′
k+1 +X1 · · ·Xk(Xk+1 −X ′k+1)fL′

≈ ε
2
X ′1 · · ·X ′kX ′k+1 + (X1 · · ·Xk −X ′1 · · ·X ′k)fL′′X

′
k+1

+X1 · · ·Xk(Xk+1 −X ′k+1)fL′

≈ ε
2
X ′1 · · ·X ′kX ′k+1 + (X1 · · ·Xk −X ′1 · · ·X ′k)fL′′X

′
k+1fL′′′

+X1 · · ·Xk(Xk+1 −X ′k+1)fL′ .

Choosing L =df max{L′, L′′′}+ 2, we obtain

X1 · · ·Xk+1(1− fL) ≈ε X ′1 · · ·X ′k+1(1− fL),

completing the inductive step. �

Lemma 3.11. Let h be any Laurent polynomial and A a C*-algebra. Then h is
uniformly continuous on bounded subsets of A.

Proof. Note that it suffices to prove this in case the Laurent polynomial h is h(z) =
zn or h(z) = z̄n. Indeed, given ε > 0 and a bound M , one may choose δ =df

ε
nMn−1 ,

owing to the equality

zn − wn =

n∑
k=1

zn−k(z − w)wk−1,

which holds even for noncommutative variables z, w. �

Lemma 3.12. Let h be a Laurent polynomial and let X ∈M(B⊗Z) be contractive.

(i) For every ε > 0 there exists N ≥ 1 such that the following holds: Fix
contractive elements a′′1 , . . . , a

′′
N ∈ B ⊗ Z with

dist(a′′j ,herB⊗Z(sj)) < εj ,

for all 1 ≤ j ≤ N .
For every L′ ≥ N , there exists an L1 ≥ 1 where for all sums

∑
j aj and∑

j a
′
j in S for which aj = a′j = a′′j for 1 ≤ j ≤ N and

aj = a′j

for all j ≥ L′, we have that

h

 ∞∑
j=1

ajX

 (1− fL1
) ≈ε h

 ∞∑
j=1

a′jX

 (1− fL1
).

(ii) For every ε > 0, there exists N ≥ 1 such that the following holds: For every
y ∈ B ⊗ Z with ‖y‖ ≤ 3 and contractive elements a′′1 , . . . , a

′′
N ∈ B ⊗ Z with

dist(a′′j ,herB⊗Z(sj)) < εj ,

there exists an M ≥ N where for all sums
∑
j aj and

∑
j a
′
j in S for which

aj = a′j = a′′j for all 1 ≤ j ≤ N and

aj = a′j
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for all j ≤M , we have that

h

 ∞∑
j=1

ajX

 y ≈ε h

 ∞∑
j=1

a′jX

 y.

Proof. Note that it suffices to prove this in case the Laurent polynomial h is h(z) =
zn or h(z) = z̄n.

(i) Let ε > 0, choose N such that
∑∞
j=N+1 εj <

ε
n(3‖X‖)n . Fix contractive

a′′1 , . . . , a
′′
N ∈ B ⊗ Z with

dist(a′′j ,herB⊗Z(sj)) < εj ,

for all 1 ≤ j ≤ N .
Let L′ ≥ N . Choose L1 from Lemma 3.10 corresponding to 2n, ε

2n3 , L′

and the finite collection A′′ =df

∑N
j=1 a

′′
j , A

′′∗, X,X∗ ∈M(B ⊗ Z).

Then consider A =df

∑
j aj , A

′ =df

∑
j a
′
j ∈ S such that aj = a′j = a′′j

for 1 ≤ j ≤ N and aj = a′j for all j ≥ L1. Then there exist bj , b
′
j ∈

herB⊗Z(sj) such that ‖aj − bj‖, ‖a′j − b′j‖ < εj , and we may also assume

bj = b′j for j ≥ L′ Set B =df

∑∞
j=N+1 bj , B

′ =df

∑∞
j=N+1 b

′
j ∈ S, which

are standard. Then

‖AX − (A′′ +B)X‖, ‖A′X − (A′′ +B′)X‖ < ε

3n(3‖X‖)n−1
.

Consequently, since A,A′, A′′ + B,A′′ + B′ ∈ S their norms are bounded
by 3, and hence the uniform continuity of h yields

h(AX) ≈ ε
3
h((A′′ +B)X) and h(A′X) ≈ ε

3
h((A′′ +B′)X).

Expanding out h((A′′ + B)X) results in an expression consisting of 2n

terms, each of which is a word of length 2n in the variables A′′, B,X (or
A′′∗, B∗, X∗ if h(z) = z̄n). Applying Lemma 3.10 to each word W and its
corresponding word W ′ from the expansion of h((A′′ + B′)X), guarantees
that W (1− fL1

) ≈ ε
2n3

W ′(1− fL1
). Therefore,

h((A′′ +B)X)(1− fL1
) ≈ ε

3
h((A′′ +B′)X)(1− fL1

),

and consequently,

h(AX) ≈ ε
3
h((A′′ +B)X) ≈ ε

3
h(A′X) ≈ ε

3
h((A′′ +B′)X).

(ii) Let ε > 0 and y ∈ B⊗Z, choose N such that
∑∞
j=N+1 εj <

ε
5n3n−1‖X‖n‖y‖ .

Fix contractive a′′1 , . . . , a
′′
N ∈ B ⊗ Z with

dist(a′′j ,herB⊗Z(sj)) < εj ,

for all 1 ≤ j ≤ N .
Choose m ∈ N such that fmy ≈ ε

5(3‖X‖)n
y. Then apply Lemma 3.9 to

m,n, ε
2n10‖y‖ and the finite collection A′′ =df

∑N
j=1 a

′′
j , A

′′∗, X,X∗ to obtain

m1, . . . ,mn. Set M =df max{m1, . . . ,mn}+ 1.
Then consider A =df

∑
j aj , A

′ =df

∑
j a
′
j ∈ S such that aj = a′j = a′′j

for 1 ≤ j ≤ N and aj = a′j for all 1 ≤ j ≤ M . Then there exist bj , b
′
j ∈

herB⊗Z(sj) such that ‖aj − bj‖, ‖a′j − b′j‖ < εj , and we may also assume
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bj = b′j for 1 ≤ j ≤ M . Set B =df

∑∞
j=N+1 bj , B

′ =df

∑∞
j=N+1 b

′
j ∈ S,

which are standard. Then

‖AX − (A′′ +B)X‖, ‖A′X − (A′′ +B′)X‖ < ε

5n(3‖X‖)n−1‖y‖
.

Consequently, since A,A′, A′′ + B,A′′ + B′ ∈ S their norms are bounded
by 3, and hence the uniform continuity of h yields

h(AX)fmy ≈ ε
5
h((A′′ +B)X)fmy

h(A′X)fmy ≈ ε
5
h((A′′ +B′)X)fmy.

Expanding out h((A′′ + B)X) results in an expression consisting of 2n

terms, each of which is a word of length 2n in the variables A′′, B,X
(or A′′∗, B∗, X∗ if h(z) = z̄n). Applying Lemma 3.9 to each word W =
X1 · · ·Xn and its corresponding word W ′ = X ′1 · · ·X ′n from the expansion
of h((A′′ +B′)X), we obtain

X1 · · ·Xnfm ≈ ε
2n10‖y‖

fm1
X1fm2

· · · fmnXmnfm,

X ′1 · · ·X ′nfm ≈ ε
2n10‖y‖

fm1X
′
1fm2 · · · fmnX ′mnfm.

By the choice ofM andB,B′, fMBfM = fMB
′fM , and hence fmjBfmj+1

=
fmjB

′fmj+1
for all 1 ≤ j ≤ n. Therefore,

h((A′′ +B)X)fmy ≈ ε
5
h((A′′ +B′)X)fmy.

Finally,

h(AX)y ≈ ε
5
h(AX)fmy ≈ ε

5
h((A′′ +B)X)fmy,

h(A′X)y ≈ ε
5
h(A′X)fmy ≈ ε

5
h((A′′ +B′)X)fmy,

and hence h(AX)y ≈ε h(A′X)y. �

Lemma 3.13. Suppose that X ∈M(B ⊗ Z).
For all ε > 0, n ≥ 1 and m ≥ 1, there exist

1 ≤ n1 < n2 < ... < nm

and

1 ≤ l1 < l2 < ... < lm

such that if A ∈M(B ⊗ Z), ‖A‖ ≤ 3 and

A =

m∑
j=1

dj +A′

where ‖A′‖ ≤ 3 with A′ ∈ herM(B⊗Z)(1− fnm−2) and dj ∈ herB⊗Z(snj ,nj−1+1) for
all j (n0 =df 0; so sn1,0 = fn1

), then

(AX)mfn = AmflmXAm−1flm−1
X....A1fl1Xfn.

In the above, for 1 ≤ j ≤ m,

Aj =df

j∑
l=1

dl.
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Lemma 3.14. Let {ck} be a sequence of contractive operators such that

ck ∈ (rk ⊗ 1)(B ⊗ Z)(rk ⊗ 1)

for all k, and X ∈M(B ⊗ Z). Let n ≥ 1 be given.
Then we have the following:

(i) For every ε > 0, there exists L ≥ 1 and M ≥ 1 such that for every l ≥ L,
for every series

∑
k ak ∈ S for which

ak = ulcku
∗
l for all 1 ≤ k ≤M,

we have that

fnh

( ∞∑
k=1

akX

)
fn ≈ε fnh

( ∞∑
k=1

ulcku
∗
lX

)
fn.

(ii) Suppose, in addition, that {bl} is a sequence of elements of B⊗Z for which

bl → fn

in norm as l→∞.
For every ε > 0, there exists L ≥ 1 and M ≥ 1 such that for every l ≥ L,

for every series
∑
k ak ∈ S for which

ak = ulcku
∗
l for all 1 ≤ k ≤M,

we have that

blh

( ∞∑
k=1

akX

)
b∗l ≈ε blh

( ∞∑
k=1

ulcku
∗
lX

)
b∗l .

Sketch of proof. (i) We may assume that h is a monomial, i.e., h is the scalar
multiple of either h(z) = zm or h(z) = zm for some m ≥ 1. For simplicity, let us
assume that h(z) = zm.

Let ε > 0 be given. Let n ≥ 1 be given. Plug X, ε
10 , n and m into Lemma 3.13

to get
1 ≤ n1 < .... < nm

and
1 ≤ l1 < .... < lm.

Since h is uniformly continuous on bounded subsets ofM(B⊗Z), chooseM > nm
so that if

∑
k bk ∈ S then there exists a sequence {b′k} of contractive elements in

B ⊗ Z for which

(3.6) h

(∑
k

bkX

)
≈ε/10 h

(∑
k

b′kX

)
and

b′k =

{
bk 1 ≤ k ≤M
∈ herB⊗Z(sk) k ≥M + 1.

Note that for all k,
‖ul(ek ⊗ 1Z)u∗l − fk‖ → 0,

and thus,

(3.7) dist(ulcku
∗
l ,herB⊗Z(sk))→ 0

as l→∞.
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Note also that for all j, l ≥ 1 and γ > 0, if

ul(ej ⊗ 1)u∗l ≈γ fj
then

(3.8) ul(1− (ej ⊗ 1))u∗l ≈γ 1− fj .

Finally, observe that for all l,

ul(1− (eM−1 ⊗ 1))u∗l

∞∑
k=M+1

ulcku
∗
l =

∞∑
k=M+1

ulcku
∗
l .

From (3.7) and (3.8), and from the fact that h is uniformly continuous on
bounded subsets of M(B ⊗ K), we can choose L ≥ 1 so that for all l ≥ L, there
exist cl,k ∈ herB⊗Z(sk) for 1 ≤ k ≤ M and there exist Cl ∈ herM(B⊗Z)(1− fM−1)
such that ‖cl,k‖ ≤ 1, ‖Cl‖ ≤ 2 for all k, and

(3.9) h

( ∞∑
k=1

ulcku
∗
lX

)
≈ε/10 h

((
M∑
k=1

cl,k + Cl

)
X

)
.

Moreover, again by uniform continuity of h on bounded sets, increasing L if neces-
sary, we may assume that our choices of L and ck,l (1 ≤ k ≤ M , l ≥ L) are such
that for all l ≥ L, if

∑
k gk ∈ S for which

gk = ulcku
∗
l

for all 1 ≤ k ≤M , then

(3.10) h

( ∞∑
k=1

gk

)
≈ε/10 h

(
M∑
k=1

cl,k +

∞∑
k=M+1

gk

)
.

Let l ≥ L be given. Suppose that
∑
k ak ∈ S such that

ak = ulcku
∗
l

for all 1 ≤ k ≤M .
By (3.6), we can find contractive a′k ∈ herB⊗Z(sk) for all k ≥M + 1 such that

h

((
M∑
k=1

ak +

∞∑
k=M+1

a′k

)
X

)
≈ε/10 h

( ∞∑
k=1

akX

)
.

So by (3.10),

(3.11) h

(( ∞∑
k=1

ak

)
X

)
≈ε/5 h

((
M∑
k=1

cl,k +

∞∑
k=M+1

a′k

)
X

)
.

For all 1 ≤ j ≤ m, let

dj =df

nj∑
k=nj−1+1

cl,k

and

Aj =df

j∑
s=1

ds.
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Then, by (3.9), (3.11), by Lemma 3.13, and since h(z) = zm,

h

(( ∞∑
k=1

ak

)
X

)
fn ≈ 3ε

10
AmflmXAm−1flm−1

X...A1fl1Xfn

≈ ε
5
h

(( ∞∑
k=1

ulcku
∗
l

)
X

)
fn.

Since l ≥ L was arbitrary, we are done.
(ii) follows from (i) since bl → fn as l→∞, and since there is a uniform bound,

independent of ε, for all relevant quantities. �

Lemma 3.15. Let h be a Laurent polynomial and X ∈M(B ⊗ Z) be contractive.
Then for every ε > 0 there exists N ≥ 1 so that if a′′1 , . . . , a

′′
N ∈ B ⊗ Z, then for

every K ≥ 1, there exists an L ≥ 1 such that for every sum
∑
j aj ∈ S for which

aj = a′′j for 1 ≤ j ≤ N ,∥∥∥∥∥∥fKh
 ∞∑
j=1

ajX

 (1− fL)

∥∥∥∥∥∥,
∥∥∥∥∥∥(1− fL)h

 ∞∑
j=1

ajX

 fK

∥∥∥∥∥∥ < ε.

Proof. This follows easily from arguments similar to those used in the proof of
Lemma 3.12. �

Lemma 3.16. Suppose, in addition, that B is stably finite. Let a0 ∈ B ⊗ Z be a
positive contraction. Let h1, h2, h3 : S1 → [0, 1] be continuous functions, δ1 > 0 and
0 ≤ λ1 < λ2 < .... < λm < 1 with Λ =df (λ1, ..., λm) such that

h1h2 = h2

osupp(h3) ⊂ osupp((h2 − δ1)+)

and the function

λ 7→
m∑
j=1

h3(e2πiλjλ)

is a full element in C(S1).

For every ε > 0, if ĥ is a Laurent polynomial for which

|ĥ(λ)− h1(λ)| < ε

1000

for all λ ∈ S1 then there exists N for which following holds:
Let a′′1 , . . . , a

′′
N ∈ B ⊗ Z be contractions with

dist(a′′j ,herB⊗Z(sj)) < εj ,

for all 1 ≤ j ≤ N .
For every L ≥ N , there exist M > L and N ′ ≥ 1 such that for any n ≥ N ′,

there exists x ∈ B ⊗ Z with

‖x‖ ≤ 2 and x∗x ∈ sL,M (B ⊗ Z)sL,M ,

where if
∑∞
j=1 aj ∈ S for which aj = a′′j for 1 ≤ j ≤ N and

aj = un(rj ⊗ vΛ)u∗n
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for all L ≤ j ≤M , then

xĥ

 ∞∑
j=1

ajT

x∗ ≈ε a0.

Proof. For simplicity, we may assume that λ1 = 0.
Let also K ≥ 1 be a number such that

K > sup{‖ĥ(Y )‖ : Y ∈M(B ⊗ Z) and ‖Y ‖ ≤ 3}.
(Note that the operators in S all have norm at most 3.)

Plug ĥ, T, ε
100 into Lemma 3.12 to getN ≥ 1. Fix contractions a′′1 , . . . , a

′′
N ∈ B⊗Z

such that

dist(a′′j ,herB⊗Z(sj)) < εj .

By Lemma 3.12, choose L1 > L such that for all l ≥ L1 − 1,

(3.12) (1− fl)ĥ

∑
j

ajT

 ≈ ε
100

(1− fl)ĥ

∑
j

a′jT


for all

∑
j aj ,

∑
j a
′
j ∈ S for which aj = a′j = a′′j for all 1 ≤ j ≤ N and

aj = a′j for all j ≥ L.

Recall that ĥ(
∑∞
j=1 ajT ) can be expressed as a polynomial in the variables∑N

j=1 ajT ,
∑
j=N+1 ajT and their adjoints. Hence, by Lemma 3.9, increasing L1 if

necessary, we may assume that for all l ≥ L1,

(3.13) (1− fl)ĥ

∑
j

ajT

 ≈ ε
100

(1− fl)ĥ

∑
j

a′jT


for all

∑
j aj ,

∑
j a
′
j ∈ S for which aj = a′′j , a′j = sj for all 1 ≤ j ≤ N and

aj = a′j for all j ≥ L,

and for which
∑∞
j=N+1 aj ,

∑∞
j=N+1 a

′
j ∈ S are standard.

(Note that (3.12) and (3.13), by uniform continuity of ĥ, for a fixed finite number
of j > N , we only need for aj , a

′
j to be sufficiently close to herB⊗Z(sj).)

Let C1, ..., Cm ∈ (1− fL1)M(B ⊗ Z)+(1− fL1) be contractive elements such
that

π(Cj) = h1(e2πiλjU) for all 1 ≤ j ≤ m.
Now choose L2 > L1 for which

ĥ

( ∞∑
k=1

e2πiλjskT

)
(1− fL2

) ≈ ε
1000

Cj(1− fL2
)

for all 1 ≤ j ≤ m.
Let A1, ..., Am ∈ (1− eL1

)M(B)+(1− eL1
) and T1 ∈ M(B) be contractive ele-

ments such that

Aj = Φ−1(Cj) for all 1 ≤ j ≤ m
and

T1 = Φ−1(T ).



34 JIREH LOREAUX, P. W. NG, AND ARINDAM SUTRADHAR

Hence,

ĥ

( ∞∑
k=1

λjrkT1

)
(1− eL2

) ≈ ε
1000

Aj(1− eL2
) for all 1 ≤ j ≤ m.

By Lemmas 3.7 and 3.8, we can find a contractive element y1 ∈ B ⊗ Z with
‖y1‖ ≤ 2 and

y∗1y1 ∈ herB⊗Z((1M(B) − eL2+1)⊗ 1Z)

for which

y1

 m∑
j=1

Aj ⊗ zm,j

 y∗1 ≈ ε
200

a0.

Hence,

y1

 m∑
j=1

ĥ

( ∞∑
k=1

e2πiλjrkT1

)
⊗ zm,j

 y∗1 ≈ ε
60
a0.

To simplify notation, let

(I) =df y1

 m∑
j=1

ĥ

( ∞∑
k=1

e2πiλjrkT1

)
⊗ zm,j

 y∗1 .

Let

Λ =df (λ1, ..., λm).

Note that for all 1 ≤ j ≤ m,

vΛz
1/2
m,j = e2πiλjz

1/2
m,j .

Hence,

(I) = y1

 m∑
j=1

(1⊗ z1/2
m,j)ĥ

( ∞∑
k=1

e2πiλjrkT1 ⊗ 1Z

)
(1⊗ z1/2

m,j)

 y∗1
= y1

 m∑
j=1

(1⊗ z1/2
m,j)ĥ

( ∞∑
k=1

rkT1 ⊗ e2πiλj1Z

)
(1⊗ z1/2

m,j)

 y∗1
= y1

 m∑
j=1

(1⊗ z1/2
m,j)ĥ

( ∞∑
k=1

rkT1 ⊗ vΛ

)
(1⊗ z1/2

m,j)

 y∗1
Now for all 1 ≤ j ≤ m, 1M(B) ⊗ z

1/2
m,j commutes with ĥ (

∑∞
k=1 rkT1 ⊗ vΛ).

Hence, defining

y2 =df y1

m∑
j=1

1M(B) ⊗ z
1/2
m,j ,

we have that

(I) = y2ĥ

( ∞∑
k=1

rkT1 ⊗ vΛ

)
y∗2 .

Since y2 ∈ B ⊗ Z, we can choose M1 > L2 so that

y2 ≈ ε
1000K

y2(rM1,L1
⊗ 1Z),
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and so that

(I) ≈ ε
200

y3ĥ

( ∞∑
k=1

rkT1 ⊗ vΛ

)
y∗3 ,

where

y3 =df y2(rM1,L1
⊗ 1Z).

Noting that rM1,L1
⊗ 1Z commutes with 1M(B) ⊗ vΛ, we can find M > M1 so

that

(3.14) y3ĥ

( ∞∑
k=1

rkT1 ⊗ vΛ

)
y∗3 ≈ ε

200
y3ĥ

(
M∑
k=1

rkT1 ⊗ vΛ

)
y∗3 .

Increasing M if necessary, we may assume that M satisfies Lemma 3.12(ii) (for
y = sM1,L1 , X = T and for ε

100 ).
For all l, by (3.14),

(I) ≈ ε
200

y3u
∗
l ĥ

(
ul(1⊗ vΛ)u∗l ul

( ∞∑
k=1

rk ⊗ 1

)
u∗l ul(T1 ⊗ 1)u∗l

)
uly
∗
3

≈ ε
100

y3u
∗
l ĥ

(
ul(1⊗ vΛ)u∗l ul

(
M∑
k=1

rk ⊗ 1

)
u∗l ul(T1 ⊗ 1)u∗l

)
uly
∗
3 .

But as l→∞,

ul

(
M∑
k=1

rk ⊗ 1

)
u∗l →

M∑
k=1

sk in norm,

and by Lemma 3.5,

ul(T1 ⊗ 1)u∗l → T strictly.

Since ĥ is uniformly continuous, we can choose L′ ≥ L2 such that for all l ≥ L′,

(I) ≈ ε
60
y3u
∗
l ĥ

(
ul(1⊗ vΛ)u∗l ul

(
M∑
k=1

rk ⊗ 1

)
u∗l T

)
uly
∗
3

Hence, by the definition of (I), for all l ≥ L′,

a0 ≈ ε
20
y3u
∗
l ĥ

(
ul

(
M∑
k=1

rk ⊗ vΛ

)
u∗l T

)
uly
∗
3 .

Note that dist(ul(rk⊗vΛ)u∗l ,herB⊗Z(sk))→ 0 as l→∞. By uniform continuity

of ĥ and by (3.13) and the remark following it, there is an L′′ > L′ such that for
all l ≥ L′′,

a0 ≈ 3ε
50
y3u
∗
l ĥ

(
M∑
k=1

akT

)
uly
∗
3

for all
∑M
k=1 ak ∈ S for which ak = a′′k for 1 ≤ k ≤ N and ak = ul(rk ⊗ vΛ)u∗l

(whose distance to herB⊗Z(sk) is sufficiently small, especially very much less than
εk) for N < k ≤M .

Note that y3u
∗
l = y2u

∗
l ul(rM1,L1

⊗1)u∗l and ul(rM1,L1
⊗1)u∗l → sM1,L1

as l→∞.
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Hence by Lemma 3.12(ii) and our choice of M we have

a0 ≈ε xĥ

( ∞∑
k=1

akT

)
x∗

for every
∑
k ak ∈ S where ak = a′′k for 1 ≤ k ≤ N and ak = ul(rk ⊗ vΛ)u∗l for

L ≤ k ≤M , where x = y3u
∗
l sM1,L1

for large enough l > L′′. �

The following lemma is the analogue of [LN20, Lemma 4.6]. While the proof has
some similarities, there are many nontrivial technical modifications and additions.

Lemma 3.17. Suppose, in addition, that B is stably finite. Let A be a unital
separable C*-algebra and φ : A →M(B ⊗ Z) a unital *-homomorphism.

Then there exist a subsequence {nl} of the positive integers and a sequence {vl}
of unitaries in Z such that π(

∑∞
l=1 unl(rl ⊗ vl)u∗nl) is a unitary in the connected

component of 1 in (π◦φ(A))′, and the unitary π(
∑∞
l=1 unl(rl⊗vl)u∗nl)U is a strongly

full element of C(B ⊗ Z).

Proof. For every n ≥ 1, let hn,1,j , hn,2,j , hn,3,j : S1 → [0, 1] be continuous functions,
λn,j ∈ [0, 1) (for 1 ≤ j ≤ n), and δn > 0 be such that

n∑
j=1

hn,3,j

is a full element of C(S1). Hence for every k,

n∑
j=1

hn,3,j(e
2πiλn,kλ)

is a full element of C(S1).

osupp(hn,3,j) ⊂ osupp((hn,2,j − δn)+),

hn,1,jhn,2,j = hn,2,j ,

hn,1,j(λ) = hn,1,1(e2πiλn,jλ) for all λ ∈ S1,

hn,3,j(λ) = hn,3,1(e2πiλn,jλ) for all λ ∈ S1,

there are infinitely many 1 ≤ j′ ≤ n′ for which

hn,1,j = hn′,1,j′

for all 1 ≤ j ≤ n, and

lim inf
n→∞

diam(osupp(hn,1,1)) = 0.

In addition, we impose the following conditions on the scalars λn,j :

|λn,j+1 − λn,j | <
10π

n
,

for all 1 ≤ j ≤ n− 1.
And we may assume that for all n ≥ 1,

0 = λn,1 < λn,2 < ... < λn,n < 1.

We denote the above statements by “(+)”.



PASCHKE DUAL ALGEBRA 37

Let {gk}∞k=1 be the sequence of continuous functions from S1 to [0, 1] and {Λk}∞k=1

be the sequence of vectors (of varying dimensions and with entries in S1) given by

gk = hn,1,j

and

Λk =df (λn,1, ..., λn,n)

when

k =
(n− 1)n

2
+ j and 1 ≤ j ≤ n.

Note that each term in {gk} reappears in the sequence infinitely many times. Also,
for each k, we will be considering the unitary vΛk ∈ Dd.d. ⊂ Z. (Recall that vΛk is
norm-path-connected to 1 via a continuous path of unitaries with length at most
3π.)

Let {ck} be a sequence of pairwise orthogonal contractions in (B ⊗ Z)+ such
for every subsequence {kl} of the positive integers, there exists a contraction Y ∈
M(B ⊗ Z) for which

Y

( ∞∑
l=1

ckl

)
Y ∗ = 1M(B)

where the sum converges strictly.
Let {εk,l} be a (decreasing in k + l) biinfinite sequence in (0, 1) such that∑

1≤k,l<∞

εk,l <∞.

We may assume that εk,l = εl,k for all k, l.
Let {εl}∞l=1 be the strictly decreasing sequence in (0, 1) from the definition of S.

(This is from the fixed notation before Lemma 3.7. Recall that
∑∞
l=1 εl < 1.)

Let S0 ⊂ φ(A) be a countable dense set in the closed unit ball of φ(A)+. Say that
we have enumerated S0 as S0 = {T ′k}∞k=1. Recall that by our sectional notational
conventions (established after the proof of Lemma 3.6), we have N ′k obtained by
plugging {T ′1, . . . , T ′k} into Lemma 3.6, and the sequence {en} quasicentralizes S =df

Φ−1(S0) = {Φ−1(T ′k)} as in Lemma 3.2. Notice that we can increase N ′k and still
satisfy the conditions of Lemma 3.6.

By an inductive construction on k (a variable ranging over the positive integers),
we construct subsequences {nl}∞l=1, {Lk}∞k=1, {Mk}∞k=1 and {Nk}k=1 of the integers,
a sequence {xk}∞k=1 of elements of B⊗Z with at most norm 2, a sequence {ĝk}∞k=1

of Laurent polynomials, and a sequence {vl}∞l=1 of unitaries in Dd.d. ⊂ Z. (The
relationship between the variable l, in {nl} and {vl}, and the induction variable
k will be explained below). In this construction, we apply (for some lemmas,
repeatedly) Lemmas 3.1, 3.6, 3.15 and 3.16. The inductive construction (in k)
would then obtain the following statements:

(i) Nk−1 < Lk < Mk < N ′k < Nk for all k ≥ 1.
(ii) For all k ≥ 1 and Lk ≤ l ≤Mk, vl = vΛk .
(iii) For all k ≥ 1, vNk = vNk+1 = 1Z .
(iv) For all k ≥ 1 and Lk ≤ l ≤ Lk+1, ‖vl+1 − vl‖ < εk.
(v) For all k ≥ 1 and for all Nk−1 + 1 ≤ l ≤ Nk, unl = unNk .

(vi) For all l ≥ 1, dist(unl(rl ⊗ 1Z)u∗nl , sl) < εl.
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(vii) For all k ≥ 1, for all 1 ≤ j ≤ k, and for any contractions zl for Nk−1 + 1 ≤
l ≤ Nk, unNk

 Nk∑
l=Nk−1+1

(rl ⊗ zl)

u∗nNk
, T ′j

 ≈εk 0.

(viii) For all l ≥ 1, each vl is path-connected to 1Z via a norm-continuous path
{vl(t)}t∈[0,1] of unitaries in Dd.d. with length at most 3π. (So vl(0) = vl
and vl(1) = 1Z .) Moreover, we can choose these paths so that for all k ≥ 1,
vNk(t) = vNk+1(t) = 1Z for all t ∈ [0, 1].

(ix) For all k1, k2 ≥ 1,

ĝk1
= ĝk2

if and only if gk1
= gk2

.

Moreover,

max
λ∈S1

|gk(λ)− ĝk(λ)| < εk0

10000
,

where k0 is the least integer for which gk = gk0
.

(x) For all k ≥ 1, x∗kxk ∈ herB⊗Z(sLk,Mk
), xkx

∗
k ∈ herB⊗Z(ck) and

xkĝk

 ∞∑
j=1

unl(rl ⊗ vl)u∗nlT

x∗k ≈ εk0
10

ck

where k0 is the least integer for which gk = gk0 .
(xi) For all k ≥ 1, for all 1 ≤ l ≤ k − 1,

xkĝk

 ∞∑
j=1

unl(rl ⊗ vl)u∗nlT

x∗l ≈εk,l 0

and

xlĝk

 ∞∑
j=1

unl(rl ⊗ vl)u∗nlT

x∗k ≈εk,l 0

We denote the above statements by “(*)”.
By Lemma 3.1 and by (*) statements (ii), (iii), (iv), (v) and (vi), the sum

W =df

∞∑
l=1

unl(rl ⊗ vl)u∗nl

converges in the strict topology on M(B ⊗ Z), and also, π(W ) is a unitary in
C(B ⊗ Z).

By Lemma 3.6 and by (*) statements (vii), (viii) and (vi), π(W ) ∈ π(A)′, and
π(W ) is path-connected to 1C(B⊗Z) via a norm-continuous path of unitaries in
π(A)′.

Let k ≥ 1 be given. We will now show that gk(π(W )U) is full in C(B ⊗ Z). Let
1
10 > ε > 0 be given. Since each term of the sequence {gl}∞l=1 is repeated infinitely
many times, we may assume that k is large enough so that

(3.15) 2
∑

l≥k,n≥1

εl,n <
ε

10
.
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Let k0 be the first integer for which such that gk0
= gk. Let {kj}∞j=1 be a

subsequence of the positive integers such that

k1 = k

and

gkj = gk for all j ≥ 1.

For all j < s,

xks ĝk(WT )x∗ks = xks ĝks(WT )x∗ks
≈ εk0

10

cks (by (*) statement (x))

and

xkj ĝk(WT )x∗ks = xkj ĝks(WT )x∗ks
≈εj,s 0 (by (*) statement (xi)).

Similarly,

xks ĝk(WT )x∗kj ≈εj,s 0.

By (*) statement (x) and since ‖xn‖ ≤ 2 for every n, and since x∗nxm = 0 for
every n 6= m,

X =df

∞∑
j=1

xkj

converges strictly to an element of M(B ⊗ Z) with norm at most 2.
Hence, by (3.15),

Xĝk(WT )X∗ =

∞∑
j=1

xkj ĝk(WT )x∗kj +
∑
j 6=s

xkj ĝk(WT )x∗ks

≈ εk0
+ε

10

∞∑
j=1

ckj .

But by the definition of {cl}∞l=1, we can find a contraction Y ∈ M(B ⊗ Z) for
which

Y

 ∞∑
j=1

ckj

Y ∗ = 1M(B⊗Z).

Hence,

Y Xĝk(WT )X∗Y ∗ ≈ εk0
+ε

10

1M(B⊗Z).

Hence,

π(Y X)ĝk(π(W )U)π(X∗Y ∗) ≈ εk0
+ε

10

1C(B⊗Z).

Therefore, since ‖Y X‖ ≤ 2, and by (*) statement (ix),

π(Y X)gk(π(W )U)π(X∗Y ∗) ≈ εk0
+ε

2

1C(B⊗Z).

Since εk0
, ε < 1, gk(π(W )U) is full in C(B ⊗ Z). Since k was arbitrary, we have

shown that for all k ≥ 1, gk(π(W )U) is full in C(B ⊗ Z).
Now, by the definition of the sequence {gk}, we claim that the unitary π(W )U

is a strongly full element of C(B).
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To see this, note that every nonnegative continuous function f ∈ C(S1) has
some gk which is in the ideal generated by f . Indeed, there is some arc of pos-
itive width η centered at s ∈ S1 on which f is greater than some ζ > 0. Since
lim infn→∞max1≤j≤n diam(osupp(hn,1,j)) = 0, there is some n such that the maxi-
mum of these diameters is less than η

3 . Moreover, since
∑n
j=1 hn,3,j is full in C(S1),

there is some 1 ≤ j ≤ n such that hn,1,j(s) 6= 0. Then, because

diam(osupp(hn,1,j)) <
η

3
,

the support of hn,1,j is entirely contained within the arc on which f ≥ ζ > 0.
Therefore hn,1,j is in the ideal generated by f . Finally, by the definition of {gk}∞l=1,
there is some k for which gk = hn,1,j (in fact, there are infinitely many such k). �

Having laid the groundwork, we are finally in a position to prove our main the-
orem concerning the K1-injectivity of the Paschke dual algebra AdB.

For the convenience of the reader, we state the full assumptions in
our main theorems below, which were standing assumptions starting in
the present Subsection 3.1.

Theorem 3.18. Suppose that A,B are separable simple C*-algebras with A unital
and nuclear, and B stable and Z-stable.

Then AdB is K1-injective. Moreover, for each n ∈ N, the map

U(Mn ⊗AdB)/U(Mn ⊗AdB)0 → U(M2n ⊗AdB)/U(M2n ⊗AdB)0

given by

[u] 7→ [u⊕ 1]

is injective.

Proof. Since B is Z-stable, it is either purely infinite or stably finite. The case when
B is purely infinite follows from [LN20, Theorem 2.5]. So we may assume that B is
stably finite. Hence B also has the corona factorization property since it is Z-stable.
Then the conclusion follows directly from Lemma 3.17 and Theorem 2.9. �

Now we obtain our primary generalization of the BDF essential codimension
result.

Theorem 3.19. Let A, B be separable simple C*-algebras, with A unital and nu-
clear and B stable and Z-stable. Let φ, ψ : A →M(B) be unital trivial full exten-
sions such that φ(a)−ψ(a) ∈ B for all a ∈ A. Then [φ, ψ] = 0 in KK(A,B) if and
only if φ, ψ are properly asymptotically unitarily equivalent.

Proof. Since B has strict comparison, B has the corona factorization property.
Hence, φ and ψ are both absorbing extensions.

By Theorem 3.18, AB is K1-injective. Hence, the result follows from Theo-
rem 2.5. �

Remark 3.20. We note that [LN20, Theorem 2.5] applies whenever B is simple
purely infinite (or B = K), and in this case Z-stability of B is not required to obtain
the conclusion of Theorem 3.19.
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3.2. Removing Jiang–Su stability. From this subsection on, we will not longer
follow the standing assumptions and notation that were made in Subsection 3.1.
Z-stability is a natural regularity assumption for nonelementary simple nuclear

C*-algebras. Among other things, it is conjectured that for any separable simple
nuclear C*-algebra, having Z-stability is equivalent to having strict comparison
for positive elements. Unfortunately, Z-stability is no longer prominent outside of
the nuclear case. For instance, C∗r (F∞) is an example of a simple (nonnuclear)
C*-algebra with strict comparison that is not Z-stable.

Our present techniques allow for the replacement of Z-stability with strict com-
parison, but with the additional restriction of finitely many extreme traces. This
is still interesting as C∗r (F∞) and a number of similar C*-algebras have a unique
tracial state.

Lemma 3.21. Let B be a nonunital separable simple C*-algebra.
Suppose that {en}∞n=1 is an approximate unit for B such that

en+1en = en for all n ≥ 1.

Suppose that {αn}∞n=1 is a sequence in S1 such that for all ε > 0, there exists an
N ≥ 1 for which

|αn+1 − αn| < ε for all n ≥ N.
Then π (

∑∞
n=1 αn(en − en−1)) is a unitary. (We use the convention e0 =df 0.)

Proof. The proof is similar to (in fact easier than) that of Lemma 3.1. However,
one can also just apply Lemma 3.1 by taking E = C and uk = 1 for all k. �

Lemma 3.22. Let B be a separable simple stable stably finite C*-algebra with strict
comparison of positive elements such that T (B) has finitely many extreme points,
and let A be a unital separable nuclear C*-algebra. Let φ : A →M(B) be a unital
*-homomorphism and let S =df {Tk : k ≥ 1} be a countable dense subset of the
closed unit ball of φ(A).

Let {en} be an approximate unit for B which quasicentralizes φ(A) so that

en+1en = en for all n ≥ 1

and

‖enTj − Tjen‖ <
1

2n
for all 1 ≤ j ≤ n.

Let U ∈ π◦φ(A)′ be a unitary. Then there exists a sequence {αn} in S1 such that
π (
∑∞
n=1 αn(en − en−1)) is a unitary in the connected component of 1 in π ◦φ(A)′,

and the unitary π (
∑∞
n=1 αn(en − en−1))U is a strongly full element of C(B).

Proof. The proof is exactly the same as that of [LN20, Lemmas 4.6 and 4.7] (and
hence, we need to replicate [LN20, Lemmas 4.4 and 4.5]). The main difference,
is that, we now do not need {en} to be a sequence of projections and we do not
need φ to have a special form, since we can use (our paper) Lemmas 3.2 and 3.21
to ensure that π (

∑∞
n=1 αn(en − en−1)) is a unitary in π ◦ φ(A)′. E.g., thus, in

[LN20, Lemma 4.6] (and Lemmas 4.4 and 4.5), we replace the (pairwise orthogonal)
projections pj with the (not necessarily pairwise orthogonal) positive elements ej−
ej−1.

We also make other obvious modifications. E.g., we replace the projection e⊥L1

in [LN20, Lemma 4.4] with (our paper’s) the positive element 1 − eL1 , and we
replace the projection p in [LN20, Lemma 4.5] with a positive element. With these
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and other trivial and straightforward modifications, the proofs all follow through
smoothly, because of the considerations of the first paragraph. �

Theorem 3.23. Suppose that A,B are separable simple C*-algebras with A unital
and nuclear, B stable and stably finite and having strict comparison of positive
elements, and T (B) having finitely many extreme points.

Then AdB is K1-injective. Moreover, for each n ∈ N, the map

U(Mn ⊗AdB)/U(Mn ⊗AdB)0 → U(M2n ⊗AdB)/U(M2n ⊗AdB)0

given by
[u] 7→ [u⊕ 1]

is injective.

Proof. The proof is exactly the same as that of Theorem 3.18, except that we
replace Lemma 3.17 with Lemma 3.22. �

Theorem 3.24. Let A, B be separable simple C*-algebras, with A unital and nu-
clear, B stable and stably finite and having strict comparison for positive elements,
and T (B) having finitely many extreme points.

Let φ, ψ : A →M(B) be two unital full trivial extensions with φ(a) − ψ(a) ∈ B
for all a ∈ A.

Then [φ, ψ] = 0 in KK(A,B) if and only if φ u ψ.

Proof. The proof is exactly the same as that of Theorem 3.19, except that Theo-
rem 3.18 is replaced with Theorem 3.23. �

Appendix

Lemma 3.25. If B is a σ-unital stable C*-algebra, then C(B) is K1-injective.

Proof. Let p, q ∈ C(B) be full properly infinite projections. Hence, let x ∈ C(B) be
such that

xpx∗ = 1C(B).

Let A ∈ M(B)+ such that π(A) = p. Since B is stable, there exists Y ∈ M(B)
such that

Y AY ∗ = 1M(B).

Hence, there exists a projection R ∈ AM(B)A for which

R ∼ 1 and 1−R ∼ 1.

Similarly, there exists A1 ∈M(B)+ with

π(A1) = q

and there exists a projection S ∈ A1M(B)A1 such that

S ∼ 1 and 1− S ∼ 1.

Hence, there exists a unitary U ∈M(B) for which

URU∗ = S.

Since B is stable, U(M(B)) is (norm) contractible, so

R ∼h S.
Then

r =df π(R) and s =df π(S)
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are full properly infinite projections in C(B) with r ≤ p, s ≤ q, and

r ∼h s.

Since p, q were arbitrary, it follows, by [BRR08, Proposition 5.1], that C(B) is K1-
injective. �
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