Functional Analysis Homework 5

Due Thursday, 29 February 2018

Problem 1. Consider the space CS[0,1] of all \mathbb{F} -valued functions that are continuous except on a (possibly empty) finite set of points which varies from function to function, and for which all the left- and right-hand limits exist. Equivalently, this statement says that there is a partition of [0,1] into a finite set of subintervals such that the function is uniformly continuous on each subinterval.

 $CS[0,1] = \{f : [0,1] \to \mathbb{F} \mid \exists t_0 < \cdots < t_n, f \text{ uniformly continuous on each } (t_i, t_{i+1})\}$

You do not have to prove that these two definitions are equivalent, you may them interchangeably in your proof.

Let $F_0[0, 1]$ denote the vector subspace of \mathbb{F} -valued functions which are zero everywhere except on a finite set which varies from function to function. Note that the Riemann integral is well-defined for any function in CS[0, 1] or in $F_0[0, 1]$, and moreover if $f \in F_0[0, 1]$, then $\int_0^1 f(x) dx = 0$, and similarly for |f|. The focus of this problem is the vector space $X := CS[0, 1]/F_0[0, 1]$. Informally, X is the space of

The focus of this problem is the vector space $X := CS[0,1]/F_0[0,1]$. Informally, X is the space of functions which are (uniformly) continuous on a finite partition of [0,1] into subintervals, and for which the function values at the endpoints are undefined. This informal description is for intuition only, you cannot use it as a definition. Another informal way to think about it is that X consists of the sums of continuous functions with step functions, which you will prove in some sense below. In what follows, remember that X consists of equivalence classes (in particular, cosets of the form $f + F_0[0,1]$) of functions; any function in a given equivalence class is called a *representative* for that equivalence class.

- (a) Explain why is doesn't make sense to talk about the value of an element of X at a point.
- (b) Prove that any element of X has a unique representative function $f \in CS[0,1]$ which is the sum of a continuous function and a step function. (Note: technically, the values of the step function at each point of discontinuity are not uniquely determined, but the constant values it takes on each interval are determined.)
- (c) Prove that the usual " L^p norm" actually defines a norm on X. More precisely, show that

$$||f + F_0[0,1]||_p := \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}$$

is a norm on X.

(d) Prove that the natural map $C[0,1] \to X$ (that's not a typo, I really meant continuous functions) defined by $f \mapsto f + F_0[0,1]$ is a linear isometry when C[0,1] is equipped with the L^p norm.

Note that this problem shows we may view X as an intermediate space between C[0,1] and its completion $L^p[0,1]$, all equipped with the L^p norm. By the way, you probably won't see the notation CS[0,1] anywhere outside this homework problem since I made it up, but the C is for *continuous* and the S is for *step*, because of the second part of this problem.

Problem 2. Consider the maps T_1, \ldots, T_5 from \mathbb{R}^2 to \mathbb{R}^2 defined by

$$(x, y) \mapsto (x, 0)$$
$$(x, y) \mapsto (y, -x)$$
$$(x, y) \mapsto (y, x)$$
$$(x, y) \mapsto (cx, cy)$$

where $c, d, x, y \in \mathbb{R}$. Show that each T_k is linear, and provide the geometric interpretation of each linear map.

Problem 3. Suppose that $T: X \to Y$ is a linear operator between normed spaces and let $Z = \ker T$. Consider the map $T_0: X/Z \to Y$ defined by

$$T_0(x + \ker T) = Tx.$$

- (a) Prove that T_0 is well-defined and linear.
- (b) Prove that T_0 is bounded if T is bounded.