Functional Analysis
Homework 5

Due Thursday, 29 February 2018

Problem 1. Consider the space C'S[0, 1] of all F-valued functions that are continuous except on a (possibly
empty) finite set of points which varies from function to function, and for which all the left- and right-hand
limits exist. Equivalently, this statement says that there is a partition of [0, 1] into a finite set of subintervals
such that the function is uniformly continuous on each subinterval.

CS[0,1] ={f:[0,1]] = F |3ty < --- < tp, f uniformly continuous on each (¢;,t;+1)}

You do not have to prove that these two definitions are equivalent, you may them interchangeably in your
proof.

Let Fy[0, 1] denote the vector subspace of F-valued functions which are zero everywhere except on a finite
set which varies from function to function. Note that the Riemann integral is well-defined for any function
in CS[0,1] or in Fp0, 1], and moreover if f € Fy[0, 1], then fol f(z)dx =0, and similarly for |f].

The focus of this problem is the vector space X := CS[0,1]/Fp[0,1]. Informally, X is the space of
functions which are (uniformly) continuous on a finite partition of [0, 1] into subintervals, and for which the
function values at the endpoints are undefined. This informal description is for intuition only, you cannot
use it as a definition. Another informal way to think about it is that X consists of the sums of continuous
functions with step functions, which you will prove in some sense below. In what follows, remember that X
consists of equivalence classes (in particular, cosets of the form f + F[0,1]) of functions; any function in a
given equivalence class is called a representative for that equivalence class.

(a) Explain why is doesn’t make sense to talk about the value of an element of X at a point.

(b) Prove that any element of X has a unique representative function f € CS]0,1] which is the sum of
a continuous function and a step function. (Note: technically, the values of the step function at each
point of discontinuity are not uniquely determined, but the constant values it takes on each interval
are determined.)

(¢) Prove that the usual “LP norm” actually defines a norm on X. More precisely, show that

15 + Fapo. 1, = ( [ @ dx)’l’

is a norm on X.

(d) Prove that the natural map C[0,1] — X (that’s not a typo, I really meant continuous functions)
defined by f — f+ Fp[0,1] is a linear isometry when C10, 1] is equipped with the LP norm.

Note that this problem shows we may view X as an intermediate space between C[0, 1] and its completion
L?[0, 1], all equipped with the L? norm. By the way, you probably won’t see the notation C'S[0, 1] anywhere
outside this homework problem since I made it up, but the C' is for continuous and the S is for step, because
of the second part of this problem..



Proof. (a) The representatives of f + Fy[0,1] € X do not share (collectively) the same value at any

point in [0,1]. Indeed, let h,, € Fy[0,1] be the function which takes the nonzero real-value r when
its argument is z, and is 0 otherwise. Then f + h,, is a representative of f + Fy[0,1], and yet
(f + hac,r)(x) - f(x) =r 7é 0.

Let f € CS[0,1]. Then there are 0 = tg < -+ < ¢, = 1 such that f is uniformly continuous on each
subinterval (¢;,t;41) where 0 < i < n. Then for 1 < i < n, define ¢; :=lim__,,+ f(x) — lim__, - f(x)

and the limits are guaranteed to exists by the definition of C'S[0,1]. For convenience set ¢o := 0. Now
define a step function h on [0, 1] by

h(l‘) _ Zf:o C; lf T € (tk,tk+1]
0 if z=0.

Then we claim that the left- and right-hand limits of f — h agree at every point of [0, 1] (the endpoints
don’t matter). Indeed, if € (t,tx41), then f — h is continuous at x, and so lim,_,,(f — h)(y) =
(f = h)(z). If x = ty, then

k-1
lim (f = h)(y) = lim f(y) — lim h(y) = lim f(y) = e,
=0

y—rt, y—rt, y—rt, y—rt,

and similarly,

k
lim (f —h)(y) = lim_f(y) — lim h(y) = lim f(y) =D e
y—ty Y=ty Y=ty Y=ty i=0
Therefore,
k k—1
lim (f — h)(y) = lim (f = h)(y) = (hrnj(y) - Z) - (hm Fy) - )
y—t, y—t, Yy—rty i=0 y—iy, i=0
k k—1
= < lim f(y) — lim f(y)) — <Z ¢ — ZCZ>
Y=ty Y=t i=0 i=0
= ( hm+ fy) — lim f(y)> —Ck
y—t, y—iy,
=0

Finally, define a function g by g(z) := (f — h)(z) — limy_(f — h)(y). By the above analysis, g(z) =0
unless x = ty for some 0 < k < n, and therefore g € Fy[0,1]. Moreover, k := f —h — g € C[0,1] by
construction (because lim,_,, g(y) = 0 for all z € [0,1]). Thus f =k+h+g.

Now suppose that ' € CS]0,1] such that f + Fy[0,1] = f' + Fy[0,1]. We can perform the operation
above to obtain f' = k' +h +¢. Then (k+h—kK — W)+ (g—¢') = f— f € Fy[0,1]. Since
g—¢ € Fp[0,1]. this implies k + h — k' — b’ is zero everywhere except the finitely many points ¢, and
t}.. However, this means that k — k' = b’ — h away from these finitely many points. By the left-hand
side is continuous and the right-hand side is a step function, and the only continuous step functions
are the constant functions. Thus k and k" differ by a constant ¢, and h and b’ differ by a constant
function —c (at least, aside from these finitely many points). So, technically, the continuous function
and step functions are not unique, but only unique up to a constant factor. However, if we canonicalize
in some way (like requiring the step functions to be zero at 0 and right-continuous), then this uniquely
identifies the continuous function and the step function.

Let g € Fp[0, 1] be arbitrary. Then it is a basic fact that fol |g(x)| dz = 0. Indeed, let n be the number
of points at which g(z) # 0 and let M = maxx € [0,1]|g(x)|. Then if 0 =59 < --- < 8, = 1 is any



partition of width J, then the upper Riemann sum is bounded above by dnM, and the lower Riemann
sum is bounded below by 0, thus as § — 0, we find fol lg(z)| dz = 0.

Let tg < --- < t, be the finitely many points at which g(x) # 0. Let f € CS[0,1]. Then define
h(ty) = |f(te) + g(tr)|” — |f(tr)|” and zero otherwise, so h € Fy[0,1]. This yields |f(z) + g(z)|” =
|f(x)|” + h(z) for all = € [0,1]. Therefore,

/ @) + g@)? de = / @ + hx) de = / )P de + / ) dr = / @) de.

Therefore || f + Fol0,1]|[} = [|(f + g) + Fo[0,1]||;. Since g € Fo[0,1] was arbitrary, this is independent
of the choice of representative.

Nonnegativity for this norm is trivial. to see that it is definitely, suppose that f € CS[0,1]\ Fy[0, 1].
Then there is some x € [0, 1] such that f is continuous at = and f(x) # 0. Then there is some ¢ > 0 for

continuity at x corresponding to € = @ Finally, for y € (x—9,2+47), we know that absf(y) > @

1/p

I1f + Fol0,1]]], (/ |fy I”dy>
l/p

([ o)
z 4 p
( * If dy)

IQfP(w |p>

Y

which is strictly greater than zero since f(x)

Homeogeneity is relatively simple:

le(f + Fol0, 1D, = lI(ef) + Fo[0, 1],

-(/ )@ iz ) "
= (i [ 15 ar) "
=l ([ 17 o) "

= e[ If + Fol0, 1],
Finally, subadditivity follows immediately from Minkowski’s inequality for integrals.

(d) Since C[0,1] is a subspace of CS[0,1], we just use the map f — f + Fy[0,1]. This map is certainly
linear because (cf) + Fo[0,1] = ¢(f + Fp[0,1]) and (f + Fol0,1]) + (g + Fu[0,1]) = (f + g) + Fo[0, 1]
which we proved on a previous homework. Moreover, the previous item shows that this map is an
isometry since || f + Fo[0, 1]||,, = [If][,-

]



Problem 2. Consider the maps 71, ...,Ty from R to R? defined by

(z,y) = (z,0)
(z,y) = (y, —z)
(z,y) = (y,2)
(z,y) = (cz, cy)

where ¢,d,z,y € R. Show that each T} is linear, and provide the geometric interpretation of each linear
map.

Proof. These maps T; are linear because

Ty (k(z,y) + (v,w)) = Ty (kx + v, ky + w) = (kx + v,0) = k(x,0) + (v,0) = kT1(z,y) + T1 (v, w)

Ty (k) + (v,0)) = To(ka + v, ky + w) = (hy + w, —kz — v) = k(y,~2) + (0, ~v) = KTa(z,y) + Ta(v,w)
Ts5(k(z,y) + (v,w)) = Ts(kx + v, ky + w) = (ky + w, kz +v) = k(y,z) + (w,v) = kT3(x,y) + T5(v, w)

Ty(k(z,y) + (v,w)) = Ty(c(kx + v), c(ky + w)) = (kex + cv, key 4+ cw) = k(cx, cy) + (cv, cw) = kTy(x,y) + Ta(v, w).

Ty is the projection onto the horizontal coordinate. Ty is counterclockwise rotation through an angle of 7.
T; is a reflection about the line y = z. Ty is a dilation (scaling) by a factor of c. [ |

Problem 3. Suppose that T : X — Y is a linear operator between normed spaces and let Z = kerT.
Consider the map Ty : X/Z — Y defined by

To(x + kerT) = Tx.
(a) Prove that Tp is well-defined and linear.

(b) Prove that Ty is bounded if T" is bounded.

Proof. (a) We begin by showing Ty is well-defined. For this, simply notice that if  + kerT = y + ker T,
then z — y € ker T'. Therefore

To(x+kerT)=Te=Tax+Ty—z)=T(x+y—z) =Ty =To(y +kerT).

So the function value is independent of the choice of representative and so the function is well-defined.
It is also linear because

To(c(z4ker T)+(y+ker T')) = Ty ((ca+y)+ker T') = T(ca+y) = cTz+Ty = cTo(x+ker T)+To(y+ker T).

(b) Now suppose that T is bounded. Consider = + ker T and any y € ker 7. Then we have
[To(x +ker T)|| = || Tz|| = |T2 + Tyl = |T'(z + )| < [T |z +yl|-
Taking the infimum over y € ker T', we find

[To(z +ker T)[| < |IT|| inf |z +yl| = |T|[lx + ker T
yEker T

Since x + ker T' was arbitrary, this proves Ty is bounded (and even that ||To|| < ||T]|-



