
Functional Analysis

Homework 5

Due Thursday, 29 February 2018

Problem 1. Consider the space CS[0, 1] of all F-valued functions that are continuous except on a (possibly
empty) finite set of points which varies from function to function, and for which all the left- and right-hand
limits exist. Equivalently, this statement says that there is a partition of [0, 1] into a finite set of subintervals
such that the function is uniformly continuous on each subinterval.

CS[0, 1] = {f : [0, 1]→ F | ∃t0 < · · · < tn, f uniformly continuous on each (ti, ti+1)}

You do not have to prove that these two definitions are equivalent, you may them interchangeably in your
proof.

Let F0[0, 1] denote the vector subspace of F-valued functions which are zero everywhere except on a finite
set which varies from function to function. Note that the Riemann integral is well-defined for any function

in CS[0, 1] or in F0[0, 1], and moreover if f ∈ F0[0, 1], then
∫ 1

0
f(x) dx = 0, and similarly for |f |.

The focus of this problem is the vector space X := CS[0, 1]/F0[0, 1]. Informally, X is the space of
functions which are (uniformly) continuous on a finite partition of [0, 1] into subintervals, and for which the
function values at the endpoints are undefined. This informal description is for intuition only, you cannot
use it as a definition. Another informal way to think about it is that X consists of the sums of continuous
functions with step functions, which you will prove in some sense below. In what follows, remember that X
consists of equivalence classes (in particular, cosets of the form f + F0[0, 1]) of functions; any function in a
given equivalence class is called a representative for that equivalence class.

(a) Explain why is doesn’t make sense to talk about the value of an element of X at a point.

(b) Prove that any element of X has a unique representative function f ∈ CS[0, 1] which is the sum of
a continuous function and a step function. (Note: technically, the values of the step function at each
point of discontinuity are not uniquely determined, but the constant values it takes on each interval
are determined.)

(c) Prove that the usual “Lp norm” actually defines a norm on X. More precisely, show that

‖f + F0[0, 1]‖p :=

(∫ 1

0

|f(x)|p dx
) 1

p

is a norm on X.

(d) Prove that the natural map C[0, 1] → X (that’s not a typo, I really meant continuous functions)
defined by f 7→ f + F0[0, 1] is a linear isometry when C[0, 1] is equipped with the Lp norm.

Note that this problem shows we may view X as an intermediate space between C[0, 1] and its completion
Lp[0, 1], all equipped with the Lp norm. By the way, you probably won’t see the notation CS[0, 1] anywhere
outside this homework problem since I made it up, but the C is for continuous and the S is for step, because
of the second part of this problem..



Proof. (a) The representatives of f + F0[0, 1] ∈ X do not share (collectively) the same value at any
point in [0, 1]. Indeed, let hx,r ∈ F0[0, 1] be the function which takes the nonzero real-value r when
its argument is x, and is 0 otherwise. Then f + hx,r is a representative of f + F0[0, 1], and yet
(f + hx,r)(x)− f(x) = r 6= 0.

(b) Let f ∈ CS[0, 1]. Then there are 0 = t0 < · · · < tn = 1 such that f is uniformly continuous on each
subinterval (ti, ti+1) where 0 ≤ i < n. Then for 1 ≤ i < n, define ci := limx→t+i

f(x) − limx→t−i
f(x)

and the limits are guaranteed to exists by the definition of CS[0, 1]. For convenience set c0 := 0. Now
define a step function h on [0, 1] by

h(x) =

{∑k
i=0 ci if x ∈ (tk, tk+1]

0 if x = 0.

Then we claim that the left- and right-hand limits of f −h agree at every point of [0, 1] (the endpoints
don’t matter). Indeed, if x ∈ (tk, tk+1), then f − h is continuous at x, and so limy→x(f − h)(y) =
(f − h)(x). If x = tk, then

lim
y→t−k

(f − h)(y) = lim
y→t−k

f(y)− lim
y→t−k

h(y) = lim
y→t−k

f(y)−
k−1∑
i=0

ci,

and similarly,

lim
y→t+k

(f − h)(y) = lim
y→t+k

f(y)− lim
y→t+k

h(y) = lim
y→t+k

f(y)−
k∑
i=0

ci.

Therefore,

lim
y→t+k

(f − h)(y)− lim
y→t−k

(f − h)(y) =

(
lim
y→t+k

f(y)−
k∑
i=0

ci

)
−

(
lim
y→t−k

f(y)−
k−1∑
i=0

ci

)

=

(
lim
y→t+k

f(y)− lim
y→t−k

f(y)

)
−

(
k∑
i=0

ci −
k−1∑
i=0

ci

)

=

(
lim
y→t+k

f(y)− lim
y→t−k

f(y)

)
− ck

= 0.

Finally, define a function g by g(x) := (f − h)(x)− limy→x(f − h)(y). By the above analysis, g(x) = 0
unless x = tk for some 0 ≤ k ≤ n, and therefore g ∈ F0[0, 1]. Moreover, k := f − h − g ∈ C[0, 1] by
construction (because limy→x g(y) = 0 for all x ∈ [0, 1]). Thus f = k + h+ g.

Now suppose that f ′ ∈ CS[0, 1] such that f + F0[0, 1] = f ′ + F0[0, 1]. We can perform the operation
above to obtain f ′ = k′ + h′ + g′. Then (k + h − k′ − h′) + (g − g′) = f − f ′ ∈ F0[0, 1]. Since
g − g′ ∈ F0[0, 1]. this implies k+ h− k′ − h′ is zero everywhere except the finitely many points tk and
t′k. However, this means that k − k′ = h′ − h away from these finitely many points. By the left-hand
side is continuous and the right-hand side is a step function, and the only continuous step functions
are the constant functions. Thus k and k′ differ by a constant c, and h and h′ differ by a constant
function −c (at least, aside from these finitely many points). So, technically, the continuous function
and step functions are not unique, but only unique up to a constant factor. However, if we canonicalize
in some way (like requiring the step functions to be zero at 0 and right-continuous), then this uniquely
identifies the continuous function and the step function.

(c) Let g ∈ F0[0, 1] be arbitrary. Then it is a basic fact that
∫ 1

0
|g(x)| dx = 0. Indeed, let n be the number

of points at which g(x) 6= 0 and let M = maxx ∈ [0, 1] |g(x)|. Then if 0 = s0 < · · · < sm = 1 is any

2



partition of width δ, then the upper Riemann sum is bounded above by δnM , and the lower Riemann

sum is bounded below by 0, thus as δ → 0, we find
∫ 1

0
|g(x)| dx = 0.

Let t0 < · · · < tn be the finitely many points at which g(x) 6= 0. Let f ∈ CS[0, 1]. Then define
h(tk) = |f(tk) + g(tk)|p − |f(tk)|p and zero otherwise, so h ∈ F0[0, 1]. This yields |f(x) + g(x)|p =
|f(x)|p + h(x) for all x ∈ [0, 1]. Therefore,∫ 1

0

|f(x) + g(x)|p dx =

∫ 1

0

|f(x)|p + h(x) dx =

∫ 1

0

|f(x)|p dx+

∫ 1

0

h(x) dx =

∫ 1

0

|f(x)|p dx.

Therefore ‖f + F0[0, 1]‖pp = ‖(f + g) + F0[0, 1]‖pp. Since g ∈ F0[0, 1] was arbitrary, this is independent
of the choice of representative.

Nonnegativity for this norm is trivial. to see that it is definitely, suppose that f ∈ CS[0, 1] \ F0[0, 1].
Then there is some x ∈ [0, 1] such that f is continuous at x and f(x) 6= 0. Then there is some δ > 0 for

continuity at x corresponding to ε = |f(x)|
2 . Finally, for y ∈ (x−δ, x+δ), we know that absf(y) ≥ |f(x)|2 .

‖f + F0[0, 1]‖p =

(∫ 1

0

|f(y)|p dy
)1/p

≥

(∫ x+δ

x−δ
|f(y)|p dy

)1/p

≥

(∫ x+δ

x−δ

|f(x)|p

2p
dy

)1/p

=

(
δ |f(x)|p

2p−1

)1/p

.

which is strictly greater than zero since f(x) 6= 0.

Homeogeneity is relatively simple:

‖c(f + F0[0, 1])‖p = ‖(cf) + F0[0, 1]‖p

=

(∫ 1

0

|(cf)(x)|p dx
)1/p

=

(
|c|p

∫ 1

0

|f(x)|p dx
)1/p

= |c|
(∫ 1

0

|f(x)|p dx
)1/p

= |c| ‖f + F0[0, 1]‖p

Finally, subadditivity follows immediately from Minkowski’s inequality for integrals.

(d) Since C[0, 1] is a subspace of CS[0, 1], we just use the map f 7→ f + F0[0, 1]. This map is certainly
linear because (cf) + F0[0, 1] = c(f + F0[0, 1]) and (f + F0[0, 1]) + (g + F0[0, 1]) = (f + g) + F0[0, 1]
which we proved on a previous homework. Moreover, the previous item shows that this map is an
isometry since ‖f + F0[0, 1]‖p = ‖f‖p.

�
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Problem 2. Consider the maps T1, . . . , T4 from R2 to R2 defined by

(x, y) 7→ (x, 0)

(x, y) 7→ (y,−x)

(x, y) 7→ (y, x)

(x, y) 7→ (cx, cy)

where c, d, x, y ∈ R. Show that each Tk is linear, and provide the geometric interpretation of each linear
map.

Proof. These maps Ti are linear because

T1(k(x, y) + (v, w)) = T1(kx+ v, ky + w) = (kx+ v, 0) = k(x, 0) + (v, 0) = kT1(x, y) + T1(v, w)

T2(k(x, y) + (v, w)) = T2(kx+ v, ky + w) = (ky + w,−kx− v) = k(y,−x) + (w,−v) = kT2(x, y) + T2(v, w)

T3(k(x, y) + (v, w)) = T3(kx+ v, ky + w) = (ky + w, kx+ v) = k(y, x) + (w, v) = kT3(x, y) + T3(v, w)

T4(k(x, y) + (v, w)) = T4(c(kx+ v), c(ky + w)) = (kcx+ cv, kcy + cw) = k(cx, cy) + (cv, cw) = kT4(x, y) + T4(v, w).

T1 is the projection onto the horizontal coordinate. T2 is counterclockwise rotation through an angle of π
2 .

T3 is a reflection about the line y = x. T4 is a dilation (scaling) by a factor of c. �

Problem 3. Suppose that T : X → Y is a linear operator between normed spaces and let Z = kerT .
Consider the map T0 : X/Z → Y defined by

T0(x+ kerT ) = Tx.

(a) Prove that T0 is well-defined and linear.

(b) Prove that T0 is bounded if T is bounded.

Proof. (a) We begin by showing T0 is well-defined. For this, simply notice that if x + kerT = y + kerT ,
then x− y ∈ kerT . Therefore

T0(x+ kerT ) = Tx = Tx+ T (y − x) = T (x+ y − x) = Ty = T0(y + kerT ).

So the function value is independent of the choice of representative and so the function is well-defined.
It is also linear because

T0
(
c(x+kerT )+(y+kerT )

)
= T0

(
(cx+y)+kerT

)
= T (cx+y) = cTx+Ty = cT0(x+kerT )+T0(y+kerT ).

(b) Now suppose that T is bounded. Consider x+ kerT and any y ∈ kerT . Then we have

‖T0(x+ kerT )‖ = ‖Tx‖ = ‖Tx+ Ty‖ = ‖T (x+ y)‖ ≤ ‖T‖ ‖x+ y‖ .

Taking the infimum over y ∈ kerT , we find

‖T0(x+ kerT )‖ ≤ ‖T‖ inf
y∈kerT

‖x+ y‖ = ‖T‖ ‖x+ kerT‖ .

Since x+ kerT was arbitrary, this proves T0 is bounded (and even that ‖T0‖ ≤ ‖T‖.
�
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