
Functional Analysis

Homework 4

Due Tuesday, 13 February 2018

Problem 1. A sequence (en) of elements from a normed space X is said to be a Schauder basis if for every
x ∈ X, there is a unique sequence (cn) of scalars such that

∑n
i=1 cnen → x. Show that if a normed space

has a Schauder basis, then it is separable.[1]

Proof. Suppose X is a normed space with a Schauder basis (en). Note that the scalar field F of X has a
countable dense set which we will call G (for R it is Q, and for C it is Q + iQ). Let Y be the collection of
all finite linear combinations of elements of the Schauder basis with coefficients in G; that is,

Y :=
⋃
n∈N

Yn, where Yn :=

{
n∑
i=1

ciei

∣∣∣∣∣ ci ∈ G

}
= spanG{e1, . . . , en}.

Note that Yn is countable because there is a natural bijective[2] map Gn → Yn given by (c1, . . . , cn) →∑n
i=1 ciei. Since Y is a countable union of countable sets, it is countable.
Now we claim that Y is dense in X. To this end, take any x ∈ X. Since (en) is a Schauder basis, there

exists a sequence of scalars (cn) from F such that
∑n
i=1 ciei → x. Therefore, given ε > 0, there is some

N ∈ N such that ∥∥∥∥∥
N∑
i=1

ciei − x

∥∥∥∥∥ < ε

2
.

Moreover, since G is dense in F, for each 1 ≤ i ≤ N , there is some ai ∈ G such that |ai − ci| ≤ ε
2N‖ei‖ .

Therefore, ∥∥∥∥∥
N∑
i=1

aiei − x

∥∥∥∥∥ ≤
∥∥∥∥∥
N∑
i=1

(ai − ci)ei

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

ciei − x

∥∥∥∥∥
≤

N∑
i=1

(
|ai − ci| · ‖ei‖

)
+

∥∥∥∥∥
N∑
i=1

ciei − x

∥∥∥∥∥
<

N∑
i=1

(
ε

2N ‖ei‖
‖ei‖

)
+
ε

2

= ε.

Since ε > 0 was arbitrary and x ∈ X was arbitrary, this proves that Y is dense in X. Because Y is countable
and dense, X is separable. �
[1]A natural question is whether every separable Banach space has a Schauder basis. Even though all of the standard examples

of separable Banach spaces do have a Schauder basis, unfortunately, this question has a negative answer in general. This was
a long-standing open problem until Enflo constructed a counterexample.
[2]All we really need is that this map is surjective, but elements of a Schauder basis are linearly independent (can you prove

that?), so it is injective too.



Problem 2. Let X be a vector space and Y subspace of X. The quotient X/Y is the collection of cosets
{x+ Y | x ∈ X}.

(a) Define an addition operation on X/Y by

(x1 + Y ) + (x2 + Y ) := (x1 + x2) + Y.

Prove that this addition on X/Y is well-defined.

(b) Define a scalar multiplication operation on X/Y in the natural way. That is,

c(x+ Y ) := (cx) + Y.

Prove that this scalar multiplication on X/Y is well-defined.

Proof. Let X be a vector space and Y a subspace of X.

(a) We first prove a basic fact: if x ∈ X and y ∈ Y , then (x + y) + Y = x + Y . The containment
(x+y) +Y ⊆ x+Y is immediate because Y is a subspace and so is closed under addition. The reverse
containment follows from noting that −y ∈ Y and x+ Y = (x+ y − y) + Y ⊆ (x+ y) + Y .

Now, suppose x1, x
′
1, x2 ∈ X with x1 +Y = x′1 +Y . Then there is some y1 ∈ Y such that x1 +y1 = x′1.

Hence

(x′1 + Y ) + (x2 + Y ) = (x′1 + x2) + Y = (x1 + y1 + x2) + Y = (x1 + x2) + Y = (x1 + Y ) + (x2 + Y ).

Therefore the addition operation is independent of the choice of representative in the first coordinate,
and by the commutativity of addition in X, this addition operation is commutative and so it is also
independent of the choice of representative in the second coordinate. Therefore addition is well-defined
on X/Y .

(b) First notice that for any x ∈ X, 0(x+ Y ) = (0x) + Y = 0 + Y = Y which is independent of the choice
of representative for the coset x+ Y . So we may suppose c 6= 0.

Let x, x′ ∈ X with x+ Y = x′ + Y . Then there is some y ∈ Y such that x+ y = x′. Moreover,

c(x′ + Y ) = (cx′) + Y = (cx+ cy) + Y = (cx) + Y = c(x+ Y ),

where the penultimate equality follows from the fact that cy ∈ Y since Y is a subspace and the fact
we proved at the beginning of the previous part of the problem. Therefore, scalar multiplication is
independent of the choice of representative, and so is well-defined.

Note that once we have shown these operations are well-defined, all the standard vector space properties for
X/Y (existence of zero, additive inverses, distributitvity of scalar multiplication over addition, etc.) follow
directly from the same properties of X. Thus X/Y is a vector space. �

Problem 3. Suppose that X is a normed space and Y is subspace of X.

(a) Prove that the function ‖·‖0 : X/Y → R defined by

‖x+ Y ‖0 := inf
y∈Y
‖x+ y‖ ,

is a pseudo-norm on X/Y .

(b) Show that ‖·‖0 is a norm on X/Y if Y is closed.

(c) Prove that if X is a Banach space and Y is closed, then X/Y is a Banach space.

Proof. Suppose that X is a normed space and Y is a subspace of X.
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(a) To show that ‖·‖0 is a pseudo-norm, we need to show that it is nonnegative, homogeneous and subad-
ditive. Nonnegativity is immediate because it is an infimum of nonnegative quantities. Moreover, it is
homogeneous because

‖0(x+ Y )‖0 = ‖Y ‖0 = inf
y∈Y
‖y‖ ≤ ‖0‖ = 0,

and if c 6= 0, then y ∈ Y if and only if cy ∈ Y , and hence

‖c(x+ Y )‖0 = inf
y∈Y
‖cx+ y‖ = inf

cy∈Y
‖cx+ cy‖ = inf

cy∈Y
|c| ‖x+ y‖ = |c| inf

y∈Y
‖x+ y‖ = |c| ‖x+ Y ‖0 .

To see that ‖·‖0 is subadditive, let y, y′ ∈ Y and x, x′ ∈ X. Then y + y′ ∈ Y , and hence

‖(x+ x′) + Y ‖0 = inf
z∈Y
‖(x+ x′) + z‖ ≤ ‖(x+ x′) + (y + y′)‖ ≤ ‖x+ y‖+ ‖x′ + y′‖ .

Taking the infimum over y ∈ Y we obtain

‖(x+ x′) + Y ‖0 ≤ inf
y∈Y

(
‖x+ y‖+ ‖x′ + y′‖

)
=

(
inf
y∈Y
‖x+ y‖

)
+ ‖x′ + y′‖

Then taking the infimum over y′ ∈ Y , we obtain

‖(x+ x′) + Y ‖0 ≤ inf
y∈Y
‖x+ y‖+ inf

y′∈Y
‖x′ + y′‖ = ‖x+ Y ‖0 + ‖x′ + Y ‖0 �

(b) Recall that from a previous homework, we showed that if (X, d) is a metric space, x ∈ X and Y ⊆ X,
then x ∈ Y if and only if D(x, Y ) := infy∈Y d(x, y) = 0. Note that in our problem, Y is a subspace of
X, and so y ∈ Y if and only if −y ∈ Y , and therefore

‖x+ Y ‖0 = inf
y∈Y
‖x+ y‖ = inf

y∈Y
‖x− (−y)‖ = inf

y∈Y
‖x− y‖ = D(x, Y ).

Therefore, ‖x+ Y ‖0 = 0 if and only if x ∈ Y .

If Y is closed, then ‖x+ Y ‖0 = 0 if and only if x ∈ Y if and only if x+ Y = 0 + Y , which is the zero
vector in X/Y . Therefore, if Y is a closed subspace of X, the ‖·‖0 is a norm on X/Y .

Similarly, if Y is not closed, then there is some x ∈ Y \Y , and then x+Y 6= 0+Y , and yet ‖x+ Y ‖0 = 0.
Therefore, this pseudo-norm is a norm if and only if Y is closed.

(c) Suppose that X is a Banach space and Y is closed. Take any sequence of cosets (xn + Y ) which
is Cauchy in X/Y . Then for each k ∈ N, there is some nk such that ‖(xn − xm) + Y ‖0 < 2−k if
n,m ≥ nk. Moreover, we can ensure that nk+1 > nk. Then we choose yk ∈ Y inductively as follows.
Let y1 = 0, and then choose yk+1 ∈ Y so that

∥∥(xnk+1
− xnk

) + yk+1

∥∥ < 2−k. Therefore, the sequence
defined by z1 = xn1 and zk+1 = xnk+1

− xnk
+ yk+1 is absolutely summable. Since X is a Banach

space, the series
∑∞
k=1 zk converges to some element x ∈ X. Moreover, the partial sums are

m∑
k=1

zk = xnm
+

m∑
k=1

yk.

Therefore, the subsequence (xnk
+ Y ) converges to x+ Y . Indeed,

‖(xnk
− x) + Y ‖0 ≤

∥∥∥∥∥xnk
− x+

k∑
i=1

yi

∥∥∥∥∥ = ‖zk − x‖ → 0 as k →∞.

Since (xn+Y ) is Cauchy and a subsequence converges to x+Y , the entire sequence converges to x+Y
as well.
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Problem 4. Give examples of subspaces of `∞ and `2 which are not closed.

Proof. Let c00 denote the collection of sequences with finite support (i.e., for each (xn) ∈ c00, there is some
N ∈ N such that if n ≥ N , then xn = 0). Note that the sum of sequences with finite support still has finite
support, and similarly for scalar multiples. Therefore, c00 is a vector subspace, both of `∞ and `2.

I claim that the closure of c00 in the `∞ norm is c0. Indeed, take any sequence x = (xn) ∈ c0. Then, for
ε > 0, there is some N ∈ N such that |xn| < ε whenever n > N . Now consider the sequence y ∈ c00 defined
by y = (x1, . . . , xN , 0, 0, . . .). Then

‖x− y‖∞ = sup
n∈N
|xn − yn| = sup

n>N
|xn| ≤ ε.

Therefore c00 is dense (in `∞ norm) in c0. Moreover, c0 is closed in `∞ norm[3]. Therefore, c0 is the closure
of c00 in `∞ norm (and obviously c00 6= c0 since (1/n) ∈ c0 \ c00).

I also claim that c00 is dense (in `2 norm) in `2 itself. Indeed, let x ∈ `2 and let ε > 0. Then since

∞∑
n=1

|xn|2 = ‖x‖22 <∞,

there is some N ∈ N such that
∑∞
n=N+1 |xn|

2
< ε2. Let y = (x1, . . . , xN , 0, 0, . . .) ∈ c00. Then

‖x− y‖22 =

∞∑
n=1

|xn − yn|2 =

∞∑
n=N+1

|xn|2 < ε2,

and hence ‖x− y‖2 < ε. Therefore c00 is dense in `2 (and obviously c00 6= `2 since (1/n) ∈ `2 \ c00). �

Problem 5. Consider the norms ‖·‖1 and ‖·‖2 on Rn. We already know that these are equivalent norms
because Rn is finite-dimensional. Prove the more explicit assertion that for all x ∈ Rn,

1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1 .

Proof. Take any x = (x1, . . . , xn) ∈ Rn. Notice that we can apply Hölder’s inequality[4] to obtain

‖x‖1 =

n∑
i=1

|xi| =
n∑
i=1

|1 · xi| ≤

(
n∑
i=1

|1|2
)1/2( n∑

i=1

|xi|2
)1/2

=
√
n ‖x‖2 ,

which yields the first inequality.
The second inequality follows by induction from a straightforward calculus fact: for t ≥ 0,

√
1 + t2 ≤ 1+t.

The calculus fact follows from taking derivatives. Consider the functions f(t) =
√

1 + t2 and g(t) = 1 + t.
Then f(0) = 1 = g(0) and f ′(t) = t√

1+t2
≤ t

t = 1 = g′(t), and hence f(t) ≤ g(t) for t ≥ 0.

We will now prove by induction that ‖x‖2 ≤ ‖x‖1. Notice that for x ∈ R, it is trivially true that
|x|2 ≤ |x|1. So suppose that n ∈ N and for x ∈ Rn, ‖x‖2 ≤ ‖x‖1. Consider y = (x1, . . . , xn+1) ∈ Rn+1

and x = (x1, . . . , xn) ∈ Rn. If xn+1 = 0, the result follows immediately by induction because in this case

[3]An explicit proof of this fact appears at the end of the homework assignment.
[4]Actually, in the special case p = q = 2, Hölder’s inequality is often referred to as the Cauchy–Schwarz inequality.
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‖y‖2 = ‖x‖2 ≤ ‖x‖1 = ‖y‖1. so assume xn+1 6= 0. In this case,

‖y‖2 =

(
n+1∑
i=1

|xi|2
)1/2

= |xn+1|

(
1 +

n∑
i=1

∣∣∣∣ xi
xn+1

∣∣∣∣2
)1/2

≤ |xn+1|

1 +

(
n∑
i=1

∣∣∣∣ xi
xn+1

∣∣∣∣2
)1/2


= |xn+1|+

(
n∑
i=1

|xi|2
)1/2

= |xn+1|+ ‖x‖2
≤ |xn+1|+ ‖x‖1 = ‖y‖1 .

Above, the first inequality follows from our calculus fact, and the second inequality is an application of the
inductive hypothesis. By induction, we have proven the result. �

Remark. It is helpful to notice that each of the these inequalities is sharp[5]. Indeed, if x = (1, . . . , 1),
then ‖x‖1 = n and ‖x‖2 =

√
n, making the first inequality sharp. Similarly, if x = (1, 0, . . . , 0), then

‖x‖1 = 1 = ‖x‖2 making the second inequality sharp.
As a technical note, it can be shown that these are essentially the only two ways to make these inequalities

sharp (i.e., a sequence where all the entries are equal in absolute value, and a sequence with only one
nonzero value). In fact, one way to prove this technical note also yields another proof of this problem:
Lagrange multipliers. The idea is this: consider the function ‖·‖1 : Rn → R subject to the constraint

‖x‖22 = 1 (i.e., we are trying to find the maximum and minimum of the function ‖·‖1 on the unit sphere
Sn−1 = {x ∈ Rn | ‖x‖2 = 1}.).

Now, we can’t immediately apply Lagrange multipliers because although the constraint function ‖x‖22 = 1
is continuously differentiable, the function ‖·‖1 is only differentiable in regions where the coordinates don’t

have sign changes. So, we actually have two constraints: ‖x‖22 = 1 and xi > 0 for all 1 ≤ i ≤ n. Applying
Lagrange multipliers to this setting yields the maximum value of ‖x‖1 =

√
n which occurs at x = (1, . . . , 1).

Since there are no other critical points, we know that ‖x‖1 <
√
n for all other vectors x subject to the

constraints, and by continuity, we know that there are no maxima on the boundary region where at least
one of the coordinates is zero.

Moreover, we know the minimum of ‖·‖1 must occur on one of these boundary regions (where one of the
coordinates is zero). Then, because each of these boundary regions looks exactly like the region we started
with except in a smaller dimension, we can apply induction to conclude that the minimum of ‖·‖1 must occur
when all the coordinates are zero except one. In this case, the only option is that one of the coordinates is
1 and the rest are zero, which yields a minimum value of ‖x‖1 = 1 occurring at x = (1, 0, . . . , 0).

Problem 6. Suppose X is a compact metric space and C ⊆ X is closed. Prove that C is compact.

Proof. Suppose X is a compact metric space and C ⊆ X is closed. Let {Vα | α ∈ I} be any open cover of
C. Since C is closed, X \ C is open. Notice that {X \ C} ∪ {Vα | α ∈ I} is an open cover of X. Indeed,

(X \ C) ∪
⋃
α∈I

Vα ⊇ (X \ C) ∪ C = X.

[5]An inequality is said to be sharp if there is some choice of the variables which actually yields equality. In this sense, there
is no “extra room” between the two quantities in general.
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Therefore, since X is compact, this cover has a finite subcover X\C, V1, . . . , Vn (note: X\C is not necessarily
part of any finite subcover, but it never hurts to throw it in). As such,

(X \ C) ∪
n⋃
i=1

Vi = X,

and therefore
⋃n
i=1 Vi ⊇ C. Hence V1, . . . , Vn is a finite subcover (of our original open cover) of C, and thus

C is compact. �

Lemma. The vector space c0 of sequences converging to zero is closed in the `∞ norm.

Proof. Let xk = (xkn) ∈ c0 be a sequence of sequences converging in `∞ norm to some x ∈ `∞. We must show
that x ∈ c0. Let ε > 0. Since xk → x in `∞, there is some N ∈ N such that if k ≥ N , then

∥∥xk − x∥∥∞ < ε.

Moreover, since xN ∈ c0, there is some M ∈ N such that if n ≥ M , then
∣∣xNn ∣∣ < ε. Therefore, for such

n ≥M ,
|xn| ≤

∣∣xn − xNn ∣∣+
∣∣xNn ∣∣ < ∥∥x− xN∥∥∞ + ε < 2ε.

Therefore x ∈ c0. �
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