Functional Analysis
Homework 3 Solutions

Due Tuesday, 6 February 2018

Problem 1. Show that C[0,1] and Cla, b] are isometric (with the usual supremum metric on each space).

Proof. Consider the map T : C[a, b] — C[0,1] defined by

(Tf)(z) = f((b—a)z+a).

First, notice that x € [0, 1] if and only if (b — a)z + a € [a,b], and therefore T'f is a well-defined function
on [0,1]. Moreover, T'f is continuous because it is a composition of continuous functions. Therefore, T is
well-defined from Cfa,b] to C0,1].

We now claim that T is an isometry. Note that from the definition of T it follows that T'(cf + g) =
c(Tf)+ (Tg) for any f,g € Cla,b] and ¢ € F, i.e., T is linear. Because of this it suffices to show that T is
norm-preserving, i.e., ||[Tf| . = | fll,, for any f € Cla,b]. Indeed, there is some y € [0, 1] which attains the
norm of T'f, and so

ITflloe = max [f((b—a)z+a)|=|f((b—a)y+a)| < max [f(z)| =]
z€[0,1] z€[a,b]
Note that 77! is a map of the same form as T, so the inequality is reversed as well. In fact, this shows that
y attains the norm of T'f if and only if (b — a)y + a attains the norm of f.
Since T is norm-preserving and linear, it is an isometry because

a(f,9) = IIf =9l = IT(f =Dlloe = ITf = Tyll -
|

Problem 2. A map f: X — Y between metric spaces (X, d) and (Y, d) is said to be uniformly continuous
if and only if for every e > 0 there is some § > 0 such that for all x1,22 € X, if d(w1,22) < & then

d(f(!L‘l), f((EQ)) < E.
Suppose that Y is a complete metric space and A C X. Let f : A — Y be uniformly continuous (with
the induced metric on A).

(a) Prove that if (a,) is Cauchy in A, then (f(ay)) is Cauchy in Y.

(b) Prove that if a € A, then for any sequence (a,) in A converging to a, the image sequence (f(a,))
converges and the limit is independent of the choice of the sequence (ay,).

(c) Prove that f extends uniquely to a continuous function f: A — Y.

Proof. Suppose that Y is a complete metric space and A C X. Let f : A — Y be uniformly continuous
(with the induced metric on A).

(a) Suppose that (a,) is Cauchy in A. Let € > 0. By the uniform continuity of f, there is some ¢ > 0 such
that for any x1, x5 € A, if d(z1,x2) < 8, then d(f(z1), f(x2)) < e. Since (a,) is Cauchy, there is some
N € N such that for all n,m > N, d(an, amn) < §, and hence J(f(an), f(an)) is Cauchy in Y.



(b) Let a € A. Then there is a sequence (a,) in A converging to a. Since convergent sequences are Cauchy,
(ayn) is Cauchy. By the previous part, ( f (an)) is Cauchy in Y Since Y is complete, this sequence
converges to some y € Y.

Now suppose that (al,) is some other sequence in A converging to a. Then we claim that d(ay,al) — 0.
Indeed, notice that
d(an,al,) < d(an,a)+ d(a,al,),

r'n
and these latter two sequences each converge to zero. By the uniform continuity of f, we can again con-
clude that d(f(an), f(a,)) — 0. Indeed, once d(an,al,) < &, we automatically have d(f(ax), f(a},)) <
e. Finally,

d(f(ap).y) < d(f(an). flan)) +d(f(an).y) =0,
and therefore ( f (a;)) converges to y as well. Thus the limit is independent of the choice of the sequence
from A converging to a.

(¢) Define a function f: A — Y by

Fla) = {f (=) red 1)

lim, o0 f(a,) x€ A\ A a, € A a, — .

This functions is well-defined by the previous part (the limit exists and it does not depend on the
choice of the sequence). It remains to show that f is (uniformly) continuous. Let € > 0. Since f is
uniformly continuous on A, there is some ¢ associated to § coming from uniform continuity. Suppose
that z1, 22 € A and d(x1,72) < g. By the definition of f, there exists a;,as € A such that d(a;, z;) < g
and cz(f(ai),?(a:i)) < § for i = 1,2 (note: if x; € A, simply choose a; = ;). Then

d(ay,a2) < d(ay,z1) + d(z1, 22) + d(z2,a2) < 0,

and therefore

d(f(fﬁ)j(ﬂ?z)) < d(?(ﬂ«"l%f(al)) + CZ(f(al)af(%)) + c?(f(al),f(xg)) <e.
Thus f is uniformly continuous.

Problem 3. Suppose that X,Y are complete metric spaces, A is dense in X, and Y contains an isometric
copy of A which is dense in Y. Prove that X and Y are isometric (hint: use the previous problem). This
establishes that the completion of a metric space is unique.

Proof. Suppose that X,Y are complete metric spaces, A is dense in X, and Y contains an isometric copy
of A which is dense in Y. That is, there is an isometry i : A — Y with i(A) dense in Y. Note that an
isometry is always uniformly continuous (just choose § = €). Indeed, if € > 0, then when a;,as € A with
d(ay,az) < €, then R

d(i(a1),i(az)) = d(a1,as2) < e.
By the previous problem, i extends to a (uniformly) continuous function i from A to Y, but since A is dense
inX,A=X. Thusi: X =Y.

We claim that i is an isometry. Indeed, let z,2’ € X. Then there are sequences (perhaps constant
sequences in the case of z, 2’ € A) (an), (al,) in A converging to z,’, respectively. Thus i(a,) — i(x) and
i(al)) — i(a’), respectively. Therefore

d(i(z),i(z")) = nl;rgo d(i(an),i(al)) = nhHH;O d(an,a,) =d(z,z').
So, i is an isometry.

Finally, we claim that i is surjective. Notice that i(X) is a complete subset of Y. Thus i(X) is closed.
Moreover, i(X) contains i(A) which is dense in Y. Putting this together we find that i(X) 2 i(4) =Y, so0 i
is surjective, and hence X,Y are isometric. |




Problem 4. A function f : X — Y between metric spaces ( d) and (Y,d) is said to be Lipschitz (or
Lipschitz continuous) if there exists an K > 0 such that d( x1), .’172)) Kd(zy,x9) for all 21,20 € X.

(a) Show that Lipschitz functions are uniformly continuous.
(b) Give an example to show that not all uniformly continuous functions are Lipschitz.
(¢) Prove that the composition of Lipschitz functions is Lipschitz.

Proof. (a) Suppose that the map f : X — Y between metric spaces (X, d) and (Y,d) is Lipschitz with
Lipschitz constant K > 0. Let € > 0 and notice that whenever x1, 2z € X with d(z1,22) < &,

Cz(f(xl),f(%)) < Kd(z1,22) < €.
Therefore f is uniformly continuous.

(b) Consider the function +/- : [0,1] — [0,1]. This function is continuous (because it is the inverse of the
continuous function x + 2 defined on the interval [0,1]), and since [0, 1] is a closed and bounded set
(more importantly, it is compact), /- is uniformly continuous.

However, it is not Lipschitz. Indeed, notice that if x > 0, then

As x — 0T, this quotient is unbounded, and therefore /- is not Lipschitz.

(c) Suppose that f: X1 — X5 and g : X2 — X3 are Lipschitz functions with associated constants Ky, K.
Then, for any a,b € X1, we find

ds((g o f)(a), (go f)(b) = ds (g(f(a)),g(f(b))) < Kyda(f(a), f(b)) < KoK ydi(a,b).
So, g o f is Lipschitz with constant K K.
|

Problem 5. A function f : X — Y between metric spaces (X,d) and (Y,d) is said to be bilipschitz if f
is Lipschitz, injective and its inverse is Lipschitz. When f is bilipschitz and surjective, we say that X, Y
are bilipschitz equivalent, which by is transitive (it is obviously reflexive and symmetric) and
therefore and an equivalence relation on metric spaces.

(a) Prove that f: X — Y is bilipschitz if and only if there is some K > 0 with

%d(.ﬁl,xg) S J(f(xl),f(xg)) S Kd(xh.’l?g).

Suppose that X, Y are bilipschitz equivalen
(b) Prove that U is open in X if and only if f(U) is open in YIE
(c) Conclude that if X is complete, then Y is complete.
(d) Prove that if X is bounded, then Y is bounded.

M Isometric spaces are completely indistinguishable as metric spaces, but in many important ways, so are metric spaces which
are only bilipschitz equivalent.

21A bijective function with this property is called a homeomorphism; in other words, a bijective continuous function whose
inverse is continuous. A homeomorphism between X,Y indicates that X and Y are indistinguishable topologically, since
topologies are completely specified by their open sets.



Proof. (a) Suppose that f : X — Y is bilipschitz. Thus f is Lipschitz with constant K; f~! is Lipschitz
with constant Ky. Let K = max{K1, K2}. Then, for any 1,22 € X, we have

d(f(21), f(x2)) < Krd(1,9) < Kd(21,22).

Similarly,

d(x1,x2) = d(fH(f(21), f7H(f(22)) < Kad(f(a1), f(22)) < Kd(f(21), f(22)).

Dividing the this latter display by K and combining the two displays, we obtain

%d(wl,xg) < d(f(21), f(22)) < Kd(z1,22).

For the remainder of the problem, we assume that X,Y are bilipschitz equivalent (i.e., f is surjective).

(a) Since f and f~! are both Lipschitz, they are both (uniformly) continuous by the previous problem.
Therefore, since f~1 is continuous, if U is open in X, then (f~1)~}(U) = f(U) is open in Y. Similarly,
if f(U) is open in Y, then since f is continuous, f~1(f(U)) = U is open in X.

(b) Suppose that X is complete and let (y,) be a Cauchy sequence in Y. Given € > 0, there is some N € N
such that if n,m > N, then d(yn,ym) < 7=. Thus

d(f 7 yn)s 7 () < Kd(Yn, ym) < e

Therefore () := (f~*(y»)) is Cauchy in X, and since X is complete, this converges to some z € X.
Since f is continuous f(z,) = f(f ' (yn)) = yn converges to f(z) € Y. Therefore Y is complete.

(c) Suppose that X is bounded, so that sup, ,.cx d(z,2") = M < oo. Since f is surjective, f(X) =Y.
Therefore, 3 R
sup d(y,y’) = sup d(f(z),f(2')) < sup Kd(z,2') = MK < .

y,y' €Y z,x’'eX z,x’eX
Therefore Y is bounded.



