
Functional Analysis

Homework 2 Solutions

Due Tuesday, 29 January 2018

Problem 1. Let A be a nonempty subset of a metric space (X, d). Let D(x,A) := infa∈A d(x, a) (This D
is not a metric). Prove that D(x,A) = 0 if and only if x ∈ A.

Proof. Suppose that D(x,A) = 0. Let U be any neighborhood of x. So there is some r > 0 with B(x; r) ⊆ U .
Then since D(x,A) = 0, there is some a ∈ A such that d(x, a) < r. Therefore a ∈ A ∩ B(x; r), and so this
set is nonempty. Hence x ∈ A.

Conversely, suppose that x ∈ A. Then for any n ∈ N, there is some xn ∈ A ∩ B(x; 1
n ). Thus D(x,A) =

infa∈A d(x, a) ≤ d(x, xn) < 1
n for each n ∈ N. Hence D(x,A) = 0. �

Problem 2. Prove that A ∩B ⊆ A∩B and that equality does not hold in general. You should ask yourself
(and figure out) what happens for unions, but you don’t need to include it in your solutions.

Problem 3. Suppose x ∈ A ∩B. Then any neighborhood U of x intersects A∩B, and therefore it intersects
both A and B. Thus x ∈ A and x ∈ B since U was arbitrary. Therefore x ∈ A ∩B.

Equality does not hold in general. Consider A = (−∞, 0) and B = (0,∞) in R equipped with the
Euclidean metric. Then it is clear that A = (−∞, 0] and similarly, B = [0,∞). Hence A ∩B = {0}. On the
other hand, A ∩B = ∅ = ∅.

Problem 4. Let (X, d) be a metric space and A ⊆ X. Prove that X \ int(A) = X \A

Proof. Since int(A) is an open set contained in A, X \ int(A) is a closed set containing X \ A. Therefore
X \ int(A) ⊇ X \A.

Since int(A) is the largest open set contained in A, we know that for any x ∈ X \ int(A) and any r > 0,
B(x; r)∩ (X \A) 6= ∅ (indeed, if this were empty, then B(x; r) ⊆ A and so int(A)∪B(x; r) would be a larger
open set contained in A). Therefore, since r > 0 was arbitrary, x ∈ X \A, and hence X \int(A) = X \A. �

Problem 5. A point x ∈ X is a boundary point of a set A in a metric space (X, d) if every neighborhood
of x (equivalently, every open ball centered at x) intersects both A and X \ A. The set of boundary points
of A is called the boundary of A and is denoted ∂A.

(a) Write ∂A as an intersection of two sets.

(b) Describe (with proof) ∂Q in R with the standard Euclidean metric.

Proof. (a) Claim: ∂A = A ∩ X \A, and this is essentially just definition pushing. Take any element
x ∈ ∂A. Then any neighborhood U of x intersects both A and X \ A. Since U was arbitrary, x ∈ A
and x ∈ X \A.

Conversely, if x ∈ A∩X \A, then for any neighborhood U of x, U intersects both A and X \A. Hence
x ∈ ∂A, proving the claim.

Notice that from an earlier question, we can also write ∂A = X \
(

int(A) ∪ int(X \A)
)
.



(b) Notice that Q does not contain any open intervals in R (because between any two rationals there is an
irrational). Therefore no point of R is an interior point of Q, and thus int(Q) = ∅.
Similarly, R \Q does not contain any open intervals in R (because between any two irrational numbers
there is a rational number). Therefore no point of R is an interior point of R \ Q, and therefore
int(R \Q) = ∅. By the previous problem, we find that ∂Q = R \

(
int(Q) ∪ int(R \Q)

)
= R.

�

Problem 6. A point x in a metric space (X, d) is said to be isolated if {x} is a neighborhood of x. A metric
space is discrete1 if every point is isolated. Let X be a discrete metric space.

(a) Prove that the singletons are open in X.

(b) Conclude that every subset of X is clopen.

(c) Explain in one sentence why if Y is any metric space and f : X → Y is any function, then f is
continuous.

Proof. (a) Take any x ∈ X. Since X is discrete, x is isolated and so {x} is a neighborhood of x. Therefore,
there is some r > 0 such that B(x; r) ⊆ {x} and we necessarily get equality here. Therefore, {x} is
open.

(b) Note that any set A =
⋃
a∈A{a} is a union of open sets and is therefore open. Since any set is open,

the complement of any set is open, and therefore any set is closed.

(c) For any open set U in Y , f−1(U) is open by the previous item, and therefore f is continuous.
�

Problem 7. Let C[a, b] have the usual supremum metric d(f, g) = maxx ∈ [a, b] |f(x)− g(x)|. Prove that
a sequence of functions fn ∈ C[a, b] converges to f ∈ C[a, b] in the metric d if and only if fn converges to f
uniformly. For this reason, the supremum metric is sometimes called the uniform metric.

Proof. Suppose that fn → f in the metric d. Then, for every ε > 0, there is an N ∈ N such that for all
n ≥ N , d(fn, f) < ε. Therefore, for any x ∈ [a, b],

|fn(x)− f(x)| ≤ max
y∈[a,b]

|fn(y)− f(y)| = d(fn, f) < ε.

Since this N is independent of x, fn converges uniformly to f .
Conversely, suppose that fn converges to f uniformly. Then for every ε > 0, there exists an N ∈ N such

that for all n ≥ N and any x ∈ [a, b], |fn(x)− f(x)| < ε. Taking the supremum over all x ∈ [a, b] (which is
a maximum by the Extreme Value Theorem since fn − f is continuous), we find

d(fn, f) = max
x∈[a,b]

|fn(x)− f(x)| ≤ ε.

(By the way, if you are worried that we got ≤ ε instead of < ε in the last line, just start the second paragraph
with ε

2 instead.) �

Problem 8. Prove that if a subsequence of a Cauchy sequence converges, then the entire sequence converges.

Proof. Suppose that xn is a Cauchy sequence in (X, d) and there is a subsequence xnk
which converges to

some element x ∈ X. Let ε > 0. By the Cauchy property, there is some N1 ∈ N such that for all j, k ≥ N1,
d(xj , xk) < ε

2 . By the convergence of the subsequence, there is some N2 ∈ N such that for every k ≥ N2,

1This is different than saying that d is the discrete metric. For example, Z with the metric induced by the standard Euclidean
metric is a discrete metric space, but this is not the discrete metric on Z.
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d(xnk
, x) < ε

2 . Now, nk is a strictly increasing sequence of positive integers, and so there is some N3 such
that for all k ≥ N3, nk ≥ N1. Let N = max{N1, N2, N3}. Then for any j ≥ N ,

d(xj , x) ≤ d(xj , xnj ) + d(xnj , x) <
ε

2
+
ε

2
= ε,

where the first factor of ε
2 follows from the Cauchy property because j ≥ N1 and j ≥ N3 which entails

nj ≥ N1. The second factor of ε
2 follows from the convergence of the subsequence since nj ≥ j ≥ N2. �

Problem 9. Give an example to show that the image of an open (respectively, closed, bounded) set under a
continuous map is not necessarily open (resp., closed, bounded). Unless your examples are highly nontrivial,
you do not need to prove that the functions you provide are continuous or that the sets you describe are
open (resp., closed, bounded).

Proof. open Consider the continuous function sin : R→ R. Then sin(R) = [0, 1] which is not open in R.

closed Consider the continuous function exp : R → R. Then exp
(
(−∞, 0]

)
= (0, 1] which is not closed in

R.

bounded Consider the continuous function x 7→ 1
x on the bounded interval (0, 1). Then the image of (0, 1)

is (1,∞) which is not bounded.
�

Problem 10. Consider C[0, 1] with the L1 metric d(f, g) =
∫ 1

0
|f − g|. If fn, f ∈ C[0, 1] and fn converges

to f in the metric d, does that imply that fn converges pointwise to f? If it does, prove it; if not, find a
counterexample. (Hint: because of the homogeneity in the metric d, it suffices to consider the case where f
is the zero function.)

Proof. The function does not necessarily converge pointwise. Consider the functions fn ∈ C[0, 1] defined by
fn(x) = xn. It is a standard example that this sequence converges pointwise to the discontinuous function
which is 0 on [0, 1) and 1 at 1. However, fn converges to the zero function f in the metric d. Indeed,

d(fn, f) =

∫ 1

0

|fn − f | =
∫ 1

0

fn =
xn+1

n+ 1

∣∣∣1
0

=
1

n+ 1
,

which clearly goes to zero as n→∞.
Note: this example fails to converge pointwise to the same function at only a single point, but it still

does converge pointwise to something. However, this is not necessarily the case. It is possible to construct
sequences of functions fn which converge to the zero function in the metric d, but which don’t converge
pointwise anywhere. �

3


