Functional Analysis Homework 1

Due Tuesday, 22 January 2018

Problem 1. If (X, d) is a metric space, prove that

$$|d(x,z) - d(y,z)| \le d(x,y).$$
(1)

Problem 2. If X is the subspace of ℓ^{∞} consisting of all sequences of zeros and ones, what is the induced metric on X?

Problem 3. Let (X, d) be a metric space and let $0 < \epsilon < 1$. Prove that the function d^{ϵ} is a metric on X. d^{ϵ} is said to be a *snowflake* of the metric d. Hint: use calculus to prove that $(1 + x)^{\epsilon} \leq 1 + x^{\epsilon}$ for any x > 0, then use the fact that $t \mapsto t^{\epsilon}$ is an increasing function.

Problem 4. The distance dist(A, B) between two nonempty subsets A, B of a metric space (X, d) is defined to be

$$\operatorname{dist}(A,B) = \inf_{\substack{a \in A \\ b \in B}} d(a,b).$$
(2)

Show that dist is *not* a metric on the power set of X.

Problem 5. For p > 1, give an example of a sequence in ℓ^p but not in ℓ^1 .

Problem 6. Give an example of a sequence in c_0 but not in ℓ^p for any $1 \le p < \infty$.

Problem 7. Let A be nonempty set in a metric space (X, d). The *diameter* of A is

$$\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y).$$
(3)

A set is *bounded* if it has finite diameter. The metric space (X, d) is said to be bounded if X is bounded.

- (a) Give an example to show that in general $\operatorname{diam}(B(x;r)) \neq 2r$.
- (b) Consider any metric space (X, d) and the function

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$
 (4)

Prove that \tilde{d} is a metric on X (I suggest you avoid looking at the proof given in Kreyszig), and that (X, \tilde{d}) is bounded.