# Functional Analysis Homework 1 Solutions 

Due Tuesday, 22 January 2018

Problem 1. If $(X, d)$ is a metric space, prove that

$$
\begin{equation*}
|d(x, z)-d(y, z)| \leq d(x, y) \tag{1}
\end{equation*}
$$

Proof. Let $x, y, z \in X$. By the triangle inequality, we have $d(x, z) \leq d(x, y)+$ $d(y, z)$, and therefore

$$
\begin{equation*}
d(x, z)-d(y, z) \leq d(x, y) \tag{2}
\end{equation*}
$$

Again, by the triangle inequality, $d(y, z) \leq d(y, x)+d(x, z)$, and therefore by symmetry

$$
\begin{equation*}
-(d(x, z)-d(y, z)) \leq d(y, x)=d(x, y) \tag{3}
\end{equation*}
$$

Combining (2) and (3) yields

$$
|d(x, z)-d(y, z)| \leq d(x, y)
$$

Problem 2. If $X$ is the subspace of $\ell^{\infty}$ consisting of all sequences of zeros and ones, what is the induced metric on $X$ ?

Proof. Let $x=\left(x_{n}\right), y=\left(y_{n}\right) \in X$ be $\{0,1\}$-valued sequences. As such, for all $n \in \mathbb{N}$,

$$
\left|x_{n}-y_{n}\right|= \begin{cases}0 & x_{n}=y_{n} \\ 1 & x_{n} \neq y_{n}\end{cases}
$$

Therefore, the metric on $X$ induced by the $\ell^{\infty}$ metric is

$$
d(x, y):=\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|=\left\{\begin{array}{ll}
0 & \forall n \in \mathbb{N}, x_{n}=y_{n} \\
1 & \exists n \in \mathbb{N}, x_{n} \neq y_{n}
\end{array}= \begin{cases}0 & x=y \\
1 & x \neq y\end{cases}\right.
$$

which is the discrete metric on $X$.
Problem 3. Let $(X, d)$ be a metric space and let $0<\epsilon<1$. Prove that the function $d^{\epsilon}$ is a metric on $X . d^{\epsilon}$ is said to be a snowflake of the metric $d$. Hint: use calculus to prove that $(1+x)^{\epsilon} \leq 1+x^{\epsilon}$ for any $x>0$, then use the fact that $t \mapsto t^{\epsilon}$ is an increasing function.

Lemma. For $t \geq 0$, and $0<\epsilon<1$,

$$
\begin{equation*}
(1+t)^{\epsilon} \leq 1+t^{\epsilon} \tag{4}
\end{equation*}
$$

Proof. Let $f(t)=(1+t)^{\epsilon}$ and $g(t)=1+t^{\epsilon}$. Since $\epsilon<1$, we find that $\epsilon-1<0$, and therefore, $(\cdot)^{\epsilon-1}$ is a decreasing function. Because $1+t>t$, this implies $(1+t)^{\epsilon-1} \leq t^{\epsilon-1}$. Moreover, because $\epsilon>0$, we find $\epsilon(1+t)^{\epsilon-1} \leq t^{\epsilon-1}$. Finally, since $f(0)=1=g(0)$ and $f^{\prime}(t) \epsilon(1+t)^{\epsilon-1} \leq t^{\epsilon-1}=g^{\prime}(t)$, we conclude that (4) follows.

Proof of 3. It is easy to see that $d^{\epsilon}$ satisfies the first three properties of a metric because $d$ does. Therefore, it suffices to prove the triangle inequality for $d^{\epsilon}$. Let $x, y, z \in X$. If any of $x, y, z$ are equal, the inequality is trivial, so we may assume they are distinct and therefore the distances between each pair are strictly positive. By the triangle inequality for $d$, we have $d(x, z)=d(x, y)+$ $d(y, z)$. Since the function $t \mapsto t^{\epsilon}$ is increasing, we find

$$
\begin{aligned}
d^{\epsilon}(x, z) & =(d(x, y)+d(y, z))^{\epsilon} \\
& =d^{\epsilon}(x, y)\left(1+\frac{d(y, z)}{d(x, y)}\right)^{\epsilon} \\
& \leq d^{\epsilon}(x, y)\left(1+\left(\frac{d(y, z)}{d(x, y)}\right)^{\epsilon}\right) \\
& =d^{\epsilon}(x, y)+d^{\epsilon}(y, z)
\end{aligned}
$$

Problem 4. The distance $\operatorname{dist}(A, B)$ between two nonempty subsets $A, B$ of a metric space $(X, d)$ is defined to be

$$
\begin{equation*}
\operatorname{dist}(A, B)=\inf _{\substack{a \in A \\ b \in B}} d(a, b) \tag{5}
\end{equation*}
$$

Show that dist is not a metric on the power set of $X$.
Proof. Although dist is nonnegative and symmetric, it doesn't satisfy the other two properties of a metric. Indeed, as an example consider any metric space $(X, d)$ with four or more points. Then if $A, B \subseteq X$ are sets such that $A \cap B \neq \emptyset$ and $A \neq B$, then there is some point $a \in A \cap B$, and so $\operatorname{dist}(A, B) \leq d(a, a)=0$.

To see that the triangle inequality fails in general, consider distinct points $w, x, y, z \in X$ and the sets $A=\{w, x\}, B=\{x, y\}$ and $C=\{y, z\}$. By the previous paragraph, we see that $\operatorname{dist}(A, B)=0=\operatorname{dist}(B, C)$, but $\operatorname{dist}(A, C)$ is just the minimum of the values $d(w, y), d(w, z), d(x, y), d(x, z)$, all of which are strictly positive. Thus $\operatorname{dist}(A, C)>0=\operatorname{dist}(A, B)+\operatorname{dist}(B, C)$ so the triangle inequality fails.

Problem 5. For $p>1$, give an example of a sequence in $\ell^{p}$ but not in $\ell^{1}$.
Proof. Let $p>1$. Then notice that $x=\left(\frac{1}{n}\right)$ is in $\ell^{p}$ but not in $\ell^{1}$. Indeed, $x$ is not in $\ell^{1}$ because the hqarmonic series is divergent. On the other hand, since $\frac{1}{n^{p}}$
is a decreasing sequence, we can apply the integral test to the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. In particular, since $p>1,-p \neq-1$, and $-p+1<0$,

$$
\int_{1}^{\infty} x^{-p} d x=\left.\lim _{b \rightarrow \infty} \frac{x^{-p+1}}{-p+1}\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \frac{b^{-p+1}}{-p+1}+\frac{1}{-p+1}=\frac{1}{-p+1}
$$

Because this integral is convergent, the associated series converges. Therefore $x \in \ell^{p}$.

Problem 6. Give an example of a sequence in $c_{0}$ but not in $\ell^{p}$ for any $1 \leq p<$ $\infty$.

Proof. Consider the sequence $x=\left(\frac{1}{\log n}\right)$ and any $p \geq 1$. Notice that $x \in c_{0}$ since $\log n \rightarrow \infty$ (and therefore $x$ converges to zero).

By L'Hôpital's rule

$$
\lim _{x \rightarrow \infty} \frac{(\log x)^{p}}{x}=\lim _{x \rightarrow \infty} \frac{p(\log x)^{p-1}}{x}
$$

Moreover, this argument can be repeatedly applied until the exponent of the logarithm is nonpositive, at which point is it clear that the limit is zero.

A consequence of this is that for any $p \geq 1$, there is some sufficiently large $N_{p}>1$ such that for all $n>N_{p}, \frac{1}{(\log n)^{p}}>\frac{1}{n}$. Therefore, by the comparison test, since the harmonic series diverges, so also does the series $\sum_{n=N_{p}}^{\infty} \frac{1}{(\log n)^{p}}$. Therefore, $x=\left(\frac{1}{\log n}\right) \notin \ell^{p}$.

Problem 7. Let $A$ be nonempty set in a metric space $(X, d)$. The diameter of $A$ is

$$
\begin{equation*}
\operatorname{diam}(A)=\sup _{x, y \in A} d(x, y) \tag{6}
\end{equation*}
$$

A set is bounded if it has finite diameter. The metric space $(X, d)$ is said to be bounded if $X$ is bounded.
(a) Give an example to show that in general $\operatorname{diam}(B(x ; r)) \neq 2 r$.
(b) Consider any metric space $(X, d)$ and the function

$$
\begin{equation*}
\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)} \tag{7}
\end{equation*}
$$

Prove that $\tilde{d}$ is a metric on $X$ (I suggest you avoid looking at the proof given in Kreyszig), and that $(X, \tilde{d})$ is bounded.

Proof.
(a) Consider a metric space $(X, d)$ where $d$ is the discrete metric. Notice that for any $x \in X$ and $0<r<1, B(x ; r)=\{x\}$. Therefore, $\operatorname{diam}(B(x ; 1))=$ $d(x, x)=0$, and this is not $2 r$.
(b) First note that the function $f(t)=\frac{t}{1+t}$ is increasing everywhere since $f^{\prime}(t)=\operatorname{frac} 1(1+t)^{2}>0$. This, along with the triangle inequality for $d$, namely, $d(x, z) \leq d(x, y)+_{d}(y, z)$ guarantees

$$
\begin{aligned}
\tilde{d}(x, z) & =\frac{d(x, z)}{1+d(x, z)} \\
& \leq \frac{d(x, y)+d(x, z)}{1+d(x, y)+d(y, z)} \\
& =\frac{d(x, y)}{1+d(x, y)+d(y, z)}+\frac{d(x, z)}{1+d(x, y)+d(y, z)} \\
& \leq \frac{d(x, y)}{1+d(x, y)}+\frac{d(x, z)}{1+d(y, z)} \\
& =\tilde{d}(x, y)+\tilde{d}(y, z)
\end{aligned}
$$

where the second inequality holds because all the terms involved are nonnegative.

