
Algebraic Cryptography

Algebra notes

Definition 1. A ring (with identity) is a triple (R,+, ·) of a set R with two
binary operations +, · (called addition and multiplication) such that (R,+) is an
abelian group, multiplication distributes over addition, multiplication is asso-
ciative, and there is a multiplicative identity. When addition and multiplication
are known from context, we just refer to R as the ring (instead of the triple
(R,+, ·)). If multiplication is commutative, R is a commutative ring.

Example 2. The simplest example of a ring is Z. Perhaps the next simplest
class of examples is ZN := Z/NZ for N ∈ N.

It is possible to talk about rings where the multiplication does not have an
identity element, but we will not do so here.

Definition 3. A ring homomorphism between rings R,R′ is a function φ : R→
R′ which preserves addition and multiplication. That is, for all r, s ∈ R,

φ(r + s) = φ(r) + φ(s), and φ(rs) = φ(r)φ(s).

If φ is:

• injective, φ is a monomorphism,

• surjective, φ is an epimorphism,

• bijective, φ is an isomorphism.

• bijective and R = S, φ is an automorphism.

Example 4. Given a ring R, we may form the polynomial ring R[x] in the
variable x. Addition and multiplication are as usual for polynomials. Of course,
we can also have a polynomial ring in several variables R[x1, . . . , xn].

Example 5. All the examples of rings we have discussed so far are commutative.
However, we can also consider the ring Mn(R) of matrices over a ring R. Even
if R is commutative, Mn(R) is always noncommutative whenever n ≥ 2.

Exercise 1. Prove that for any ring R, the ring Mn(R) is noncommutative
whenever n ≥ 2.

Definition 6. Given a ring R, a nonzero element u ∈ R is a unit if it is invertible
in R. We denote the set of units by R∗, which is a multiplicative group.
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Definition 7. A field F is a commutative ring in which every nonzero element
has a multiplicative inverse. Equivalently, F is commutative and F∗ = F \ {0}.

Example 8. Some familiar fields are Q,R,C.

Example 9. Here are the groups of units for the various examples of rings
we’ve discussed.

(a) Z∗ = {−1, 1},
(b) Z∗N = {k ∈ ZN | gcd(k,N) = 1},
(c) Mn(F)∗ = GLn(F).

Definition 10. Given a, b ∈ Z, we say a divides b, denoted a | b, if b = ac for
some c ∈ Z. (Here we may replace Z with N everywhere if we so choose, for if
a, b ∈ N, then c ∈ N too.) Of course, this definition may be generalized to any
ring R (e.g., polynomial rings). In a field, every nonzero element divides every
element of the field.

Definition 11. A natural number p > 1 is said to be prime if it has no divisors
x between 1 < x < p. Equivalently, p > 1 is prime if for any a, b ∈ Z, whenever
p divides ab, either p divides a or p divides b.

Problem 12. Prove the two definitions of prime number given above are actu-
ally equivalent.

Example 13. Given a prime number p, Fp := Zp

Definition 14. For any field F, and any x ∈ F, n ∈ N, we can define

nx :=

n times︷ ︸︸ ︷
x+ · · ·+ x (−n)x :=

n times︷ ︸︸ ︷
(−x) + · · ·+ (−x)

If for some p, px = 0 for some 0 6= x ∈ F (equivalently, for every such x, see
exercise below), we say that F has characteristic p Otherwise, we say F has
characteristic zero.

Exercise 2. Prove that px = 0 for some 0 6= x ∈ F if and only if py = 0 for
every y ∈ F.

Exercise 3. Prove that any field either has characteristic zero or characteristic
p, where p is prime. (it cannot have composite characteristic)

Exercise 4. Prove that if F has characteristic p for some prime, then F contains
a copy of Fp, and similarly, if F has characteristic zero, then F contains a copy
of Q.

Definition 15. Given fields K,F, we say that K is an extension field of F if
F ⊆ K. In this case, we can view K as an F-vector space. The dimension of
this vector space is called the degree of K over F, and is denoted [K : F]. If the
degree of K over F is finite, we call K a finite extension of F.
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Exercise 5. Prove that [R : Q] = ∞ ( bonus: more precisely, the degree is
2ℵ0 = c) and [C : R] = 2.

Theorem 16. If F ⊆ K ⊆ E, then [E : F] = [E : K] [K : F].

Proof. Suppose that V = {vγ}γ∈Γ is a basis for E over K, and thatW = {wδ}δ∈∆

is a basis for K over F. We claim that WV := {wδvγ}(δ,γ)∈∆×Γ is a basis for E
over F.

We first show this collection F-spans E. Let e ∈ E. Since V K-spans E, there
are v1, . . . , vn ∈ V and k1, . . . , kn ∈ K such that

e =

n∑
j=1

kjvj .

Moreover, since W F-spans K, for each kj ∈ K there are fj,1, . . . , fj,mj
∈ F and

wj,1, . . . , wj,mj
∈ W so that

kj =

mj∑
i=1

fj,iwj,i.

Therefore

e =

n∑
j=1

kjvj =

n∑
j=1

mj∑
i=1

fj,iwj,ivj ∈ spanWV

We also show WV is linearly independent over F. Suppose Φ ⊆ ∆ × Γ is
a finite set. Suppose further that for (δ, γ) ∈ Φ, there are some fδ,γ ∈ F and
wδvγ ∈ WV so that ∑

(δ,γ)∈Φ

fδ,γwδvγ = 0.

For convenience, let ΦΓ denote the projection of Φ onto the second coordinate.
Then the above can be written as

∑
γ∈ΦΓ

 ∑
(δ,γ)∈Φ

fδ,γwδ

 vγ = 0.

Since the coefficients
∑

(δ,γ)∈Φ fδ,γwδ ∈ K and V is linearly independent over K,

we know that for each γ ∈ Φγ , the coefficient above is zero. Since
∑

(δ,γ)∈Φ fδ,γwδ =
0 and W is linearly independent over F, each fδ,γ = 0. This proves fδ,γ = 0 for
all (δ, γ) ∈ Φ. Therefore, WV is linearly independent over F.

Finally, this shows WV is a basis for E over F, and therefore

[E : F] = |∆× Γ| = |∆| |Γ| = [E : K] [K : F]. �

Definition 17. Given an element f ∈ R[x] of a polynomial ring, we say f is
irreducible if whenever f = gh factors, either g or h is a unit of R[x]. Note that
this is essentially the definition of prime adapted for polynomials.
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Exercise 6. Suppose R is an integral domain (i.e., has no zero divisors). Note
that R is a subring of R[x] (by identifying R with the constant polynomials).
Prove (R[x])∗ = R∗ under this identification.

Example 18. Note that the polynomial f ∈ Z[x] given by f(x) = x2 +x− 1 is
irreducible over Z[x] but is reducible over R[x]. Indeed, since f has degree 2, it
is reducible if and only if it factors into linear factors if and only if its roots are

in the ring. But f(x) = (x− ϕ)(x+ ϕ−1) where ϕ = 1+
√

5
2 is the golden ratio,

which is irrational since
√

5 is irrational.

Theorem 19. A monic polynomial f ∈ Z[x] is irreducible in Z[x] if and only
if it is irreducible in Q[x].

The proof of this theorem relies on Gauss’s Lemma. We will not prove it
here because it is outside our scope, but it is an important and useful fact to
know.

Exercise 7. Prove that if a polynomial f ∈ R[x] has odd degree n > 2, then f
is reducible.

Definition 20. A field F is called algebraically closed if one of the following
equivalent conditions holds.

(a) The only nonconstant irreducible polynomials in F[x] are linear.

(b) Every nonconstant polynomial factors completely into linear terms in F[x].

(c) Every polynomial has a root in F.

Exercise 8. Prove the conditions in the definition of algebraically closed are
actually equivalent.

Theorem 21 (Fundamental Theorem of Algebra). The field C of complex num-
bers is algebraically closed.

There are a plethora of proofs of this fact. Most of them involve some topol-
ogy or complex analysis and so lie outside the scope of this course. However,
there is a primarily algebraic proof using only the fact about how odd degree
polynomials over R are reducible. Once we cover the Fundamental Theorem of
Galois Theory, we can revisit the proof of the Fundamental Theorem of Algebra.
Also, on Blackboard I have posted a paper which presents an elementary (but
nontrivial) proof of the Fundamental Theorem of Algebra using linear algebra.
(Jim, you are welcome to sketch your favorite proof of the FTA if you want in
class; it’s your choice.)

Definition 22. The algebraic closure of a field F, denoted F is the smallest
(up to isomorphism) algebraically closed field containing F. Note: algebraically
closed fields containing F always exist.

Definition 23. A value α is said to be algebraic over F if it is the root of some
polynomial in F[x]. Otherwise, α is said to be transcendental.
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Example 24. The elements
√

2, ϕ := 1+
√

5
2 are algebraic over Q because they

are roots of x2−2 and x2+x−1. On the other hand both π, e are transcendental
over Q. This latter fact is not obvious.

Exercise 9. Explain why “most” elements of R are transcendental over Q.

Definition 25. A (left) ideal J of a ring R is an additive subgroup of R with
the property that rj ∈ J for every r ∈ R and j ∈ J . Right ideals are defined
similarly. If R is commutative, left and right ideals coincide.

Definition 26. An integral domain is a commutative ring which has no zero
divisors. A nonzero element a ∈ R is said to be a zero divisor if there is a
nonzero b ∈ R such that ab = 0.

Example 27. The ring ZN is an integral domain if and only if N is prime.
Indeed, if N is prime, we know that ZN is a field, and hence cannot have
zeros divisors because every nonzero element has an inverse. Similarly, if N is
composite, then N = nk for some 1 < n, k < N , but nk ≡ 0 (mod N).

Definition 28. A principal ideal J of a ring R is an ideal generated by a single
element. That is, there is some x ∈ J so that J = 〈x〉 := Rx := {rx | r ∈ R}.
An integral domain R is a principal ideal domain (PID) if every ideal is principal.

Theorem 29. The polynomial ring R[x] is a PID if and only if R is a field.

Exercise 10. Suppose F is a field and α is algebraic over F. Prove that the
set J = {f ∈ F[x] | α is a root of f} is an ideal of F[x]. Conclude that α has a
minimum polynomial; that is, a polynomial mα ∈ F[x] so that mα(α) = 0 and
whenever f ∈ F[x] with f(α) = 0, mα divides f . Note: To make the minimum
polynomial unique, we also require that it is monic, i.e., the coefficient of the
highest degree term is 1.

Definition 30. Let α be algebraic over a field F. The degree of α over F is the
degree of the minimum polynomial mα over F. Equivalently, this is the degree
[F(α) : F] where F(α) is the smallest field containing F and α (this always exists).
The field F(α) is the field obtained by adjoining α to F.

Exercise 11. Prove the equivalence in the previous definition. That is, if α is
algebraic over F, prove that [F(α) : F] = degmα. As a corollary, conclude that
α ∈ F if and only if F(α) has degree 1 over F if and only if F(α) = F.

Definition 31. Given a polynomial f ∈ F[x] of degree d with roots α1, . . . , αd
(either in F or not), the splitting field of f is the finite extension F(α1, . . . , αn).
This is the smallest extension of F over which f splits into linear factors.

Example 32. The splitting field of x2 − 2 over Q is Q(
√

2). However, Q( 3
√

2)
is not the splitting field of x3 − 2. Why? Because Q( 3

√
2) ⊆ R and if ω is a

primitive cube root of unity, then ω 3
√

2 is a root of x3−2, but it is not in Q( 3
√

2)
since it isn’t real.
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Exercise 12. Prove that the splitting field of x3 − 2 is Q(ω, 3
√

2) and that
[Q(ω, 3

√
2) : Q] = 6.

Exercise 13. If f ∈ F[x] is irreducible of degree d, what are the minimum and
maximum possible degrees of the splitting field of f over F?

Problem 33. Let K be the splitting field of the polynomial X3 − 2 over F.
Find the degree of K if F is: (a) R, (b) F5, (c) F7, (d) F31. You must provide
justification for your answers.

Definition 34. The derivative (respectively, partial derivatives) of a polynomial
in one (resp., several) variables are defined using the formula xn 7→ nxn−1. We
don’t appeal to the limit definition since this doesn’t make sense over general
(e.g., finite) fields.

Exercise 14. If a polynomial f(x) has a root α of multiplicity m ≥ 2 (ie., has
(x− α)m, then α is also a root of its derivative f ′(x).

Problem 35. Prove that a polynomial in Fp[x] has derivative identically zero
if and only if it is the p-th power of a polynomial in Fp[x]. Give a criterion for
this to happen.

Exercise 15. Suppose F is a finite field with q elements, which we will hence-
forth denote Fq (we will prove uniqueness up to isomorphism later). Prove that
q = pn for some n ∈ N and some prime p.

Exercise 16. Prove that lcm(j, n) = nj
gcd(j,n) .

Lemma 36. Suppose g is an element of finite order n in a group G. Then gj

has order n
gcd(j,n) .

Proof. Let m ∈ N Then (gj)m = gjm = e if and only if jm = kn for some k ∈ N.
In other words, jm is a multiple of n (and necessarily a common multiple of
j, n). The smallest that jm can possibly be is lcm(j, n) = jn

gcd(j,n) which occurs

precisely when m := n
gcd(j,n) . Therefore o(gj) = n

gcd(j,n) . �

Theorem 37. The group F∗q is cyclic. Moreover, if g is a generator of F∗q , then

gj is also a generator if and only if gcd(j, q − 1) = 1.

Proof. Let n := maxy∈F∗
q
o(y) be the maximum of the orders of the elements in

F∗q . We claim that o(y) divides n for any y ∈ F∗q . Indeed, let g be an element of
order n, and let y ∈ F∗q . Since F∗q is abelian, o(gy) = lcm(o(g), o(y)) ≥ o(g) = n.
At the same time, o(gy) ≤ n, so o(gy) = n. This implies that lcm(o(g), o(y)) =
n = o(g), and therefore o(y) divides o(g).

We now claim that g is a generator of F∗q . For this, notice that from the
previous paragraph yn = 1 for every y ∈ F∗q , and so the polynomial xn − 1
has at least q − 1 roots. Therefore n ≥ q − 1 (since a polynomial can’t have
more roots than its degree). But since n ≤ q − 1 by Lagrange’s theorem, this
implies n = q−1. Thus g is a generator of F∗q . Finally, by the preceding lemma,

o(gj) = o(g)
gcd(j,o(g)) = q−1

gcd(j,q−1) = q − 1 if and only if gcd(j, q − 1) = 1. �
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I proved the theorem in the above manner because I felt it was the cleanest.
It is different than the one provided in your book, but they both rely on the key
fact that a polynomial of degree d can have at most d roots (because of unique
factorization).

Definition 38. The Euler totient function ϕ : N → N counts the number of
positive integers relatively prime to n that are less than n. That is,

ϕ(n) := |{k ∈ N | k < n, gcd(k, n) = 1}|

So the previous theorem says that F∗q has ϕ(q − 1) generators.
Before we prove that following theorem, it is useful to consider the Frobenius

automorphism.

Definition 39. Given a field F of characteristic p, the map x 7→ xp is an
automorphism of F called the Frobenius automorphism.

To show the Frobenius automorphism is even a homomorphism, we need the
following lemma.

Lemma 40. (a+ b)p = ap + bp in any field of characteristic p.

Proof. Binomial theorem and
(
n
k

)
is divisible by n whenever 0 < k < n. �

Since (ab)p = apbp in any commutative ring, this along with the above
lemma prove that the Frobenius automorphism is actually a homomorphism. It
is injective because F if ap = 0, then a = 0 (otherwise we could multiply by
(a−1)p to get the contradiction 1 = 0). Thus the kernel of this homomorphism
is trivial and so it is injective. Consequently, the Frobenius automorphism is
surjective because it is an injective function from a finite set to itself.

Theorem 41. If Fq is a field of q elements, then every element is a root of the
polynomial xq−x and Fq is precisely the set of roots of that equation. Conversely,
for every prime power q = pf , the splitting field over Fp of the polynomial xq−x
is a field of q elements.

Proof. Suppose that Fq is a field with q elements. Clearly 0 is a root of xq − x.
Moreover, for every y ∈ F∗q , the order of y divides q− 1 by Lagrange’s theorem,
and therefore yq−1 − 1 = 0. Multiplying by y, we find that y is root of xq − x.
Thus every element of Fq is a root of xq−x. Since xq−x has at most q distinct
roots (in, say, its splitting field), Fq exhausts all the roots of xq − x.

For the converse, suppose that q = pf with p prime. Let K denote the
splitting field over Fp of xq−x. Since the derivative of xq−x is qxq−1−1 = −1
which has no roots, xq − x has no repeated roots, and therefore has q distinct
roots in K. Thus K contains at least q elements. But we prove the roots of xq−x
are a field, and thus K must consist only of these roots (since the splitting field
is the smallest field containing all the roots). For this, notice that since the map
x 7→ xq is just f iterations of the Frobenius map, that the sum or product of
roots of xq − x is also a root (since the Frobenius map is a homomorphism).
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Moreover, it is clear that the additive inverse of any root is also a root (handle
the cases p = 2 and p odd separately). Finally, if α is a nonzero root of xq − x,
then multiplying 0 = α − αq by α−(q+1), we find α−1 is also a root of xq − x.
Thus, the roots form a field. �

Definition 42. Let F ⊆ K be an extension of fields, and let τ be an automor-
phism of K which fixes F; that is, τ |F = idF. Then the fixed field of τ is the
intermediate field F ⊆ Kτ ⊆ K defined by

Kτ := {x ∈ K | τ(x) = x}.

Exercise 17. Let F ⊆ K be an extension of fields and τ ∈ Aut(K) an automor-
phism which fixes F. If α is a root of an irreducible polynomial f ∈ F[x], then
τ(α) is a conjugate of α over F. That is, τ(α) is also a root of f .

Theorem 43. Let Fq be the field with q = pf elements and σ is Frobenius
automorphism. Then the fixed field of σ is the prime field, i.e., Fσq = Fp.
Moreover, the order of σ (in the group Aut(Fq)) is f .

Proof. By Fermat’s Little Theorem, Fp is fixed by σ. Conversely, any element of
Fq fixed by σ is a root of xp−x, which has at most p roots. Therefore, Fσq = Fp.

Let σj denote j iterations of σ. Notice that any element of Kσj

is a root of
xp

j − x, and so is contained in the field Fpj . Thus the order of σ is at least f .
Furthermore, we know the elements of Fq are all roots of xq − x, and hence Fq
is fixed by σf . Thus the order of σ in Aut(Fq) is f . �

Theorem 44. Suppose α ∈ Fq and σ is the Frobenius automorphism. Then the

conjugates of α over Fp are the elements σj(α) = αp
j

.

Proof. Suppose α is root of an irreducible polynomial f ∈ Fp[x] of degree k.
Then F(α) ∼= Fpk . If α′ is a conjugate of α over Fp, then F(α′) ∼= Fpk as well,

and hence all the conjugates of α are roots of xp
k − x. Therefore, since σ takes

α to conjugates of α, σ restricts to an automorphism of Fpk ∼= F(α). By the
previous theorem, the order of σ in Aut(Fpk) = k. Since Fpk ∼= F(α), that k is
also the order of the element α under σ. Therefore, iterating sigma runs through
all k conjugates of α. �

Theorem 45. The subfields of Fpf are Fpd for d | f . Consequently, adjoining
an element of Fpf to Fp results in one of these fields.

Proof. Suppose α ∈ Fpf has degree d over Fp. Then F(α) ∼= Fpd , and hence Fpf
is a vector space over Fpd of some dimension, say n. Therefore pf = (pd)n = pdn,
and thus d | f .

Conversely, if f = dn, and α ∈ Fpd , then αp
d

= α, and hence

αp
f

= αp
dn

= α(pd)n = (((αp
d

)p
d

) · · · )p
d

= α.

�
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Theorem 46. For q = pf , the polynomial xq − x factors over Fp into the
product of all monic irreducible polynomials of degrees d dividing f .

Proof. Factor xq − x over Fp into monic irreducible polynomials. Let d be the
degree of one such polynomial. Then adjoining any root of that polynomial
yields a subfield Fpd of Fq and so d | f by the previous theorem.

Now, if α is a root of a monic irreducible polynomial g over Fp of degree
d | f , then F(α) ∼= Fpd and a previous theorem proves that this contains all
conjugates of α over Fp. By the previous theorem Fpd ⊆ Fq Therefore g divides
xq − x. �

Exercise 18. If f is a prime number, then there are pf−p
f distinct monic irre-

ducible polynomials of degree f over Fp.

Proof. By the previous theorem xp
f − x factors over Fp into monic irreducible

polynomials of degrees dividing f , of which the only possibilities are 1, f since
f is prime. The linear factors correspond exactly the p elements of Fp. If we let
n denote the number of irreducible polynomials of degree f , then we must have

the degree equality pf = nf + p, whence n = pf−p
f . �

Exercise 19. Provide a formula for the number of distinct monic irreducible
polynomials of degree f (not necessarily prime) over Fp in terms of the divisors
of f .

Problem 47. Let Fq where q = pf be a finite field, and let g be an irreducible
polynomial of degree f over Fp. Then two elements of Fq can be multiplied or
divided in O(ln2 q) bit operations. If N is a positive integer, then an element
can be raised to the N -th power in Fq in O(lnN ln2 q) bit operations.

Definition 48. An extension of fields F ⊆ K is said to be normal if every
irreducible polynomial (formal derivative is nonzero) over F with a root in K
factors completely over K. An extension is said to be separable if the minimal
polynomial over F of any element in K has a nonzero formal derivative. An ex-
tension is said to be algebraic if it has no transcendental elements. An algebraic
extension which is normal and separable is called a Galois extension.

Remark 49. Any extension of a field of characteristic zero is separable, as is
any algebraic extension of a finite field. An equivalent characterization of Galois
extensions are the splitting fields of separable polynomials.

Definition 50. Let F ⊆ K be normal and separable extension of fields. Let
Gal(K/F) denote the subgroup of Aut(K) which fix the field F. We call this the
Galois group of K over F.

Theorem 51 (Fundamental Theorem of Galois Theory). Let F ⊆ K be normal
and separable extension of fields. Then there is a natural bijection between
subgroups of Gal(K/F) (i.e., automorphisms of K which fix F) and intermediate
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fields F ⊆ E ⊆ K. In particular, given a subgroup G of Gal(K/F), the map
G 7→ KG given by

KG :=
⋂
τ∈G

Kτ

is a bijection whose inverse is given by E 7→ GE where

GE := {τ ∈ Gal(K/F) | E ⊆ Kτ}.

Moreover, this bijection takes normal subgroups of Gal(K/F) to normal exten-
sions of F and vice versa. This bijection is inclusion-reversing. Moreover,
|G| = [K : KG] and |Gal(K/F)/G| = [KG : F].

Remark 52. In the case when F ⊆ K is not a Galois extension, the above
correspondence still yields an injective map from subgroups to subfields, and a
surjective map in the reverse direction. Unfortunately, the other properties are
lost.
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