
Algebraic Cryptography

Homework 6

Due Monday, 4 December 2017

Problem 1. Show that a linear change of variables can be used to transform
the left side of the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

over a field F to the form:

(a) y2 if Char(F) 6= 2;

(b) y2 + xy if Char(F) = 2 and the xy-term in equation (1) is nonzero (i.e.,
a1 6= 0).

Proof. (a) We will make the substitution y = y′ + bx+ c. Then the terms on
the left-hand side become

y2 = y′2 + 2bxy′ + 2cy′ + (2bcx+ b2x2 + c2)

a1xy = a1xy
′ + (a1bx

2 + a1cx)

a3y = a3y
′ + (a3bx+ a3c).

All the terms involving only constants and factors of x (terms in paren-
theses above) will be moved to the right-hand side and so can be ignored.
Then after the substitution and rearrangement, the left-hand side becomes

y′2 + (2b+ a1)xy′ + (2c+ a3)y′,

and so to make the coefficients of the latter terms zero, we let b = −a1

2
and c = −a3

2 (we can divide by 2 since Char(F) 6= 2).

(b) One can check that making a substitution of the form y = y′ + bx + c
doesn’t change the left-hand side at all when Char(F) = 2. So we should
consider a substitution of x. To keep things simple, we will only consider
a substitution of the form x = x′ + b (because including a y term in this
substitution would cause some terms from the right-hand side to move to
the left, which would make things hard to keep track of; a substitution

1

like we have chosen isn’t guaranteed to work, but hopefully it will). Under
our substitution, the left-hand side becomes

y2 + a1xy + a3y = y2 + a1x
′y + (a1b+ a3)y

and so setting b = −a3

a1
(we can divide by a1 since it is nonzero), we can

force the coefficient of y to be zero. This leaves us with an equation whose
left-hand side has the form y2 + a1x

′y. In order to make the a1 coefficient
1, we perform the substitutions y = a31y

′′ and x′ = a21x
′′. This yields an

equation in which the y2, xy, and x3 terms all have the same coefficient
(a61), and so we can divide by it to make all of them have a coefficient of
1, as desired.

�

Problem 2. If Char(F) = 2, show that there is no elliptic curve with equation
(1) where a1 = a3 = 0.

Proof. Recall that an equation of the form (1) defines an elliptic curve over F
only if it is smooth; that is, its partial derivatives have no simultaneous solutions
in E(F). If F has characteristic 2 the partial derivative with respect to x yields
the equation:

a1y = 3x2 + 2a2x+ a4

a1y = 3x2 + a4.

The partial derivative with respect to y yields the equation:

2y + a1x+ a3 = 0

a1x+ a3 = 0.

If a1 = a3 = 0, then these two equations become

0 = 3x2 + a4

0 = 0

which obviously have simultaneous solutions in the algebraic closure of F, namely
the pair (

√
−a4/3, y) for any value of y. To conclude the curve is not smooth,

we must check that one of these points is on the elliptic curve. That is, we need
to check that it satisfies the equation y2 = x3 + a2x

2 + a4x
4 + a6. However,

since we have a free choice of y, this is trivial. Thus, when a1 = a3 = 0, the
curve defined by (1) is not smooth and therefore not an elliptic curve. �

Problem 3. In the case when Char(F) 6= 2, from the first problem we can write
an equation for an elliptic curve in the form

y2 = x3 + a2x
2 + a4x+ a6, (2)

where the coefficients on the right are possibly different from the original ones,
but this is not important. Show that this curve is smooth if and only if the
cubic polynomial on the right has no multiple roots (in the algebraic closure F).

2

Proof. As in the previous problem, we take the partial derivatives with respect
to x and y and end up with the equations

0 = 3x2 + 2a2x
2 + a4x+ a6

2y = 0.

Notice that if the cubic on the right-hand side of (2) has a multiple root α ∈ F,
then it is also a root of its partial derivative, and so satisfies the first equation in
the system above as well. Therefore, the pair (α, 0) ∈ E(F) and also simultane-
ously satisfies both partial derivative equations. Thus the curve is not smooth
in this case.

Conversely, suppose that the curve is not smooth; that is, suppose that there
is a point (α, β) ∈ E(F) which satisfies both partial derivative equations. Then,
since it satisfies the second, that implies β = 0. Because (α, 0) ∈ E(F) and
satisfies the first partial derivative equation, we see that α is a root of both the
cubic and its derivative. Therefore the cubic has α has a multiple root. �

Problem 4. Each of the following points has finite order on the given elliptic
curve over Q. In each case, find the order of P .

(a) P = (0, 16) on y2 = x3 + 256.

(b) P =
(
1
2 ,

1
2

)
on y2 = x3 + 1

4x.

(c) P = (3, 8) on y2 = x3 − 43x+ 166.

Proof. We will just compute a few multiples of P in each case.

(a) For P = (0, 16) on y2 = x3 + 256, note that 2P = (0,−16), and thus
3P = 2P + P = O. Thus the order of P is 3.

(b) For P =
(
1
2 ,

1
2

)
on y2 = x3 + 1

4x, note that 2P = (0, 0) and hence 4P = O.
Thus the order of P divides 4, but it is not 2, and hence it must be 4.

(c) For P = (3, 8) on y2 = x3 − 43x + 166, note that 2P = (−5,−16),
4P = (11, 32), and 8P = (3, 8) = P . Therefore 7P = O, and since 7 is
prime, the order of P must be 7.

�

Problem 5. (a) Describe in detail the Elliptic Curve Diffie–Hellman Key Ex-
change and ElGamal Message Transmission methods.

(b) Consider the Elliptic Curve Diffie–Hellman Problem (ECDHP), the El-
Gamal Problem (EGP) and the Elliptic Curve Discrete Log Problem
(ECDLP). Prove that ECDHP and EGP are equivalent, and that both
problems reduce to ECDLP.

(c) Explain why (we think) that ECDHP and EGP are secure schemes.

3

Proof. In what follows, we consider an elliptic curve E over a finite field F,
which are assumed to be publicly known.

(a) The Elliptic Curve Diffie–Hellman Key Exchange protocol has the follow-
ing steps:

(a) Alice and Bob publicly agree on a base point P on E.

(b) Alice picks a random integer a and Bob picks a random integer b
(each choice is private).

(c) Alice sends Bob (publicly) aP and Bob sends Alice (publicly) bP .

(d) Alice computes a(bP) and Bob computes b(aP), which are both the
shared secret key (ab)P .

The ElGamal Message Transmission protocol has the following steps.

(a) Alice and Bob publicly agree on a base point P on E.

(b) Alice picks a random integer a and Bob picks a random integer b
(each choice is private).

(c) Alice sends Bob (publicly) aP and Bob sends Alice (publicly) bP .

(d) Alice picks another random integer k.

(e) To send a message m, Alice sends Bob the pair of points kP and
m+ k(bP).

(f) To decrypt, Bob computes b(kP) = k(bP) and then computes (m+
k(bP))− k(bP) = m.

(b) For clarity, we state each of the problems:

ECDHP Input: P, aP, bP . Output: (ab)P .

EGP Input: P, aP, bP, kP,m+ k(bP). Output: m.

ECDLP Input: P, aP . Output: a.

We first prove that EGP reduces to ECDHP. Indeed, let P, aP, bP, kP,m+
k(bP) be an instance of EGP. Then P, bP, kP is an instance of ECDHP,
and so by calling ECDHP, we obtain (bk)P = k(bP). Subtracting this
from m+ k(bP) we obtain m.

We now prove that ECDHP reduces to EGP. Indeed, let P, aP, bP be an
instance of ECDHP. Then P, 0P, bP, aP,O is an instance of EGP (since
O = −a(bP)+a(bP)), and so by applying EGP, we obtain −a(bP). Negat-
ing this (which is a trivial operation, just negate the second coordinate),
we obtain a(bP) = (ab)P .

The previous paragraphs show that ECDHP and EGP are equivalent prob-
lems. Therefore, to show that they both reduce to ECDLP, it suffices to
show that ECDHP reduces to ECDLP. For this, let P, aP, bP be an in-
stance of ECDHP. Applying ECDLP to the instance P, aP , we obtain a.
Then we computea(bP) = (ab)P .

4

(c) We think that ECDHP and EGP are secure schemes because we have not
found any more efficient way to solve them than by first solving ECDLP.
Moreover, we have not found any polynomial time algorithms for ECDLP.
Finally, elliptic curve cryptography (and these schemes) have been around
about 30 years, so a trivial attack that no one has thought of yet seems
unlikely.

�

Problem 6. Let G be a group whose order is B-smooth. Prove that there
is a polynomial time algorithm (the input size is B) to solve the Discrete Log
Problem to base g ∈ G. More specifically, given g, y ∈ G, your algorithm should
output an integer x less or equal to the order of g such that gx = y; or state
that no such x exists. (Note: for this problem you may assume without proof
that the Chinese Remainder Theorem has an O(ln(N)2) algorithm where N
denotes the “big” modulus in the CRT, i.e., N = n1 · · ·nk where n1, . . . , nk are
relatively prime).

Proof. Consider a group G of B-smooth order and elements g, y ∈ G. Our goal
is to find an integer x (with x ≤ o(g)) such that xg = y. Let |G| =

∏l
i=1 p

si
i

be the prime factorization. We can obtain any prime factor of |G| in at most
O(B) divisions (using simple trial division) of |G| by a number less than B.
Each division takes a number of bit operations which is a polynomial in log2 |G|
and log2 |B|. Thus, the entire factorization is polynomial time in log2 |G| and
B. Note that pi ≤ B and l ≤ B (the latter because there are not more than B

distinct primes less than B). Moreover, note that
∑l

i=1 si ≤ log2 |G| because

|G| ≥
∏l

i=1 2si = 2
∑l

i=1 si .
Our first step will be to compute the order o(g). Note that o(g) | |G|, so

our goal will be to find the smallest power of each pi such that
(
|G|
p
ri
i

)
g = O.

For this compute the sequence
(
|G|
pj
i

)
g for j = 1, . . . , si, stopping at the first

value of j for which this group element is not the identity. For this value of j,
we find ri = si − j + 1. Note, for each i, this takes at most si divisions and si
groups operations. Thus, the whole procedure takes at most

∑l
i=1 si ≤ log2 |G|

divisions and group operations, each of which can be performed in polynomial
time. Thus this entire paragraph can be performed in polynomial time with
input size log2 |G|. Finally, N := o(g) =

∏l
i=1 p

ri
i .

Our next step will be, given pr := prii for some i, to compute that base-p
expansion of any x (mod pr). In particular, x ≡ x0 + x1p + · · · + xr−1p

r−1

(mod pr), with xj ∈ {0, 1, . . . , p − 1}, and our goal is to compute all the xj .
We start by computing x0. First notice that if xg = y (which is what we are
trying to do), then Nx

p g = N
p y. We can compute the right-hand side because we

have that information, but notice that the left-hand side becomes Nx0

p g, which

happens because when we multiply by N
p , all the other terms in the expansion

of x become multiples of N , which is the order of g. So, to find x0, we do so by

trial-and-error. Namely, we compute the sequence N
p g,

2N
p g, . . . ,

(p−1)N
p g (this is

5

at most B group operations) until it matches N
p y, and this is our value of x0. To

find x1, we first note that (x−x0)g = y−x0g. Multiplying both sides by N
p2 , we

obtain Nx1

p2 = N
p2 (y−x0g). Then, we perform the same trial-and-error procedure

as before to find x1. This also takes B groups operations. Repeating this for
each 0 ≤ j ≤ r−1 we find that there were about rB group operations (as well as
r divisions). Thus, it takes riB groups operations and ri divisions to compute

x mod prii . Doing this for each 1 ≤ i ≤ l takes B
∑l

i=1 ri ≤ B log2 |G| group
operations and not more than log2 |G| divisions. Thus, computing x mod prii
for each 1 ≤ i ≤ l is polynomial time in the inputs B, log2 |G|.

Finally, we apply the Chinese Remainder Theorem to x (mod prii) to find

x (mod
∏l

i=1 p
ri
i) = x (mod N). This is polynomial time in the logarithms of

max prii and l, so polynomial time in log2 p
ri
i ≤ ri log2 pi ≤ log2 |G| log2B and

log2 l ≤ log2B. This step is much faster than the previous paragraph.
This entire algorithm computes x (if it exists). If not such x exists, then at

some point there will be no match at the trial-and-error step. If that happens,
output “no such x exists”. �

6

