# Algebraic Cryptography Homework 5 

Due Wednesday, 25 October 2017

We begin with a bit more number theory, because it came up in our algebra material.

Exercise 1. Prove that $\operatorname{lcm}(j, n) \operatorname{gcd}(j, n)=n j$. If you choose to use the Fundamental Theorem of Arithmetic, you should first prove that; but there is an easier way.

Problem 2. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ denote Euler's totient function. That is, $\varphi(n)$ denotes the number of positive integers less than or equal to $n$ which are relatively prime to $n$. We encountered this function before when reducing the RSA problem to the Integer Factorization Search problem in polynomial time. Since you were unfamiliar with it, I thought it would be good for you to review the basic properties.
(a) Prove that $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$ for any prime $p$.
(b) Prove that

$$
\sum_{d \mid N} \varphi(d)=N
$$

(c) Prove that $\varphi$ is multiplicative. That is, prove that if $\operatorname{gcd}(m, n)=1$, then $\varphi(m n)=\varphi(m) \varphi(n)$.
Now for the algebra.
Exercise 3. Suppose $\mathbb{F}$ is a finite field with $q$ elements, which we will henceforth denote $\mathbb{F}_{q}$ (we will prove uniqueness up to isomorphism later). Prove that $q=p^{n}$ for some $n \in \mathbb{N}$ and some prime $p$.

Problem 4. Prove that the number of $k$-th roots of unity in $\mathbb{F}_{p^{f}}$ is equal to $\operatorname{gcd}\left(k, p^{f}-1\right)$.

Problem 5. Suppose that $\alpha \in \mathbb{F}_{p^{2}}$ is a root of the polynomial $x^{2}+a x+b \in \mathbb{F}_{p}[x]$.
(a) Prove that $\alpha^{p}$ is also a root of this polynomial.
(b) Prove that if $\alpha \notin \mathbb{F}_{p}$, then $a=-\alpha-\alpha^{p}$ and $b=\alpha^{p+1}$.
(c) Prove that if $\alpha \notin \mathbb{F}_{p}$ and $c, d \in \mathbb{F}_{p}$, then $(c \alpha+d)^{p+1}=d^{2}-a c d+b c^{2}$ (which is an element of $\mathbb{F}_{p}$ ).
(d) Let $i$ be a square root of -1 in $\mathbb{F}_{19^{2}}$. Use part (c) to find $(2+3 i)^{101}$ (that is, write it in the form $a+b i$ for $a, b \in \mathbb{F}_{19}$.

Problem 6. Consider $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{*}$ (i.e., the group of units of this ring; the set of integers relatively prime to $p^{\alpha}$ with multiplication $\bmod p^{\alpha}$ ) where $p$ is prime.
(a) Suppose $p>2$, and let $g$ be an integer that generates $\mathbb{F}_{p}^{*}$. Let $\alpha$ be any integer greater than 1. Prove that either $g$ or $(p+1) g$ generates $\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)^{*}$. Thus the latter is also a cyclic group.
(b) Prove that if $\alpha>2$, then $\left(\mathbb{Z} / 2^{\alpha} \mathbb{Z}\right)^{*}$ is not cyclic, but that the number 5 generates a subgroup consisting of half of its elements, namely those which are $\equiv 1(\bmod 4)$.

