
Algebraic Cryptography

Homework 5

Due Wednesday, 25 October 2017

We begin with a bit more number theory, because it came up in our algebra
material.

Exercise 1. Prove that lcm(j, n) gcd(j, n) = nj. If you choose to use the
Fundamental Theorem of Arithmetic, you should first prove that; but there is
an easier way.

To prove the first exercise, we will establish a few basic lemmas.

Lemma 1. For any nonzero integers a, b, the integers a
gcd(a,b) ,

b
gcd(a,b) are rel-

atively prime.

Proof. Let c be any common divisor of a
gcd(a,b) and b

gcd(a,b) . Thus a
gcd(a,b) = ck

and a
gcd(a,b) = cl, hence a = (c gcd(a, b))k and n = (c gcd(a, b))l. Thus c gcd(a, b)

is a common divisor of a, b, and therefore c = 1. �

Lemma 2. Suppose that a, b are relatively prime integers that each divide some
integer m, then ab also divides m.

Proof. We prove this using Bezout’s identity. Indeed, since a, b are relatively
prime, then 1 = gcd(a, b) = ax + by for some integers x, y. Also, m = ak and
m = bl for some integers k, l. Thus m = max+mby = blax+akby = ab(lx+ky)
and hence ab divides m. �

Lemma 3. If a, b, c are integers, then lcm(ca, cb) ≥ c lcm(a, b).

Proof. Let k be any common multiple of ca, cb, so that k = car = cbs for
some integers r, s. Then k

c = ar = bs is an integer and a common multiple of

a, b. Thus k
c ≥ lcm(a, b) and hence k ≥ c lcm(a, b). Therefore lcm(ca, cb) ≥

c lcm(a, b). �

Proof. Clearly, Since n
gcd(n,j) and j

gcd(n,j) are integers, it is clear that nj
gcd(j,n) is

a common multiple of n, j, and therefore lcm(n, j) ≤ nj
gcd(j,n) , so it suffices to

prove the reverse inequality. Note that by Lemma 1, gcd
(

n
gcd(n,j) ,

j
gcd(n,j)

)
= 1.
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Then by Lemma 2, any multiple of both n
gcd(n,j) ,

j
gcd(n,j) is also a multiple of

their product. Thus

lcm

(
n

gcd(n, j)
,

j

gcd(n, j)

)
≥ nj

gcd(n, j)2
.

By Lemma 3, we find

lcm(n, j) ≥ gcd(n, j) lcm

(
n

gcd(n, j)
,

j

gcd(n, j)

)
≥ nj

gcd(n, j)
. �

Problem 2. Let ϕ : N → N denote Euler’s totient function. That is, ϕ(n)
denotes the number of positive integers less than or equal to n which are rela-
tively prime to n. We encountered this function before when reducing the RSA
problem to the Integer Factorization Search problem in polynomial time. Since
you were unfamiliar with it, I thought it would be good for you to review the
basic properties.

(a) Prove that ϕ(pk) = pk − pk−1 for any prime p.

(b) Prove that ∑
d|N

ϕ(d) = N.

(c) Prove that ϕ is multiplicative. That is, prove that if gcd(m,n) = 1, then
ϕ(mn) = ϕ(m)ϕ(n).

Because we will use it below, we provide a quick proof of the Chinese Re-
mainder Theorem. We only prove the case of two relatively prime positive
integers, but this can easily be bootstrapped by induction to a finite collection
of relatively prime positive integers.

Theorem 4 (Chinese Remainder Theorem). Let m,n be relatively prime posi-
tive integers. The map ψ : k 7→

(
k (mod m), k (mod n)

)
is a ring isomorphism

between Zmn and Zm × Zn.

Proof. That ψ is a ring homomorphism follows easily from the fact that m,n
divide mn. We leave checking that to the reader. Note: in general the standard
map Zr → Zs is not a homomorphism.

To see that ψ is an isomorphism, we note that Zmn and Zm×Zn both have
mn elements. Then since these are finite sets with the same elements, it suffices
to prove ψ is injective (for then it must also be surjective), and since it is a
homomorphism, it suffices to prove the kernel is trivial. To this end, suppose
k ∈ Zmn and ϕ(k) = (0, 0). Then this means that n divides k and m divides
k. By Lemma 2, we find that mn divides k, or in other words, k = 0. Thus
kerψ = {0} and so ψ is injective. �

Proof. (a) Let p be a prime and k a positive integer. Then there are pk integers
in the interval [1, pk]. Moreover, for an integer a, gcd(a, pk) > 1 if and only
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if p divides a. So, it suffices to count the number of multiples of p in this
interval, of which there are clearly pk−1. Finally, the number of integers in
this interval which are relatively prime to pk must be ϕ(pk) = pk − pk−1.

(b) We will partition the interval [1, N ] in the following manner. For d | N ,
set Nd := {x ∈ [1, N ] | gcd(x,N) = d}. Clearly, [1, N ] is the disjoint
union of Nd for d | N . We will prove that |Nd| = ϕ

(
N
d

)
. Indeed, notice

that if x ∈ Nd, then x
d ∈

[
1, Nd

]
and by Lemma 1, gcd

(
x
d ,

N
d

)
= 1.

Therefore |Nd| ≤ ϕ
(
N
d

)
. For the other direction, suppose that y ∈

[
1, Nd

]
and gcd

(
y, Nd

)
= 1. Then yd ∈ [1, N ] and gcd(yd,N) = d (d is clearly a

common divisor, and it can’t be greater without y, nd having a common

divisor). Thus ϕ
(
N
d

)
≤ |Nd|. Finally, notice that d 7→ N

d is a bijection of
the divisors of N in [1, N ]. Putting all this together we find

N =
∑
d|N

|Nd| =
∑
d|N

ϕ

(
N

d

)
=
∑
d|N

ϕ(d).

(c) The map ψ : k 7→
(
k (mod n), k (mod m)

)
is a ring homomorphism from

Zmn → Zn×Zm. In this problem, we always works with the least positive
residues, so Zn consists of the values {1, . . . , n}. Let k = knn + rn and
k = kmm + rm, where rn = k (mod n) and rm = k (mod m). Suppose
k is relatively prime to mn. Then by Bezout’s identity, there are integers
x, y so that kx+mny = 1. Therefore,

1 = (knn+ rn)x+mny = rnx+ n(kn +my).

Therefore, by Bezout’s identity, gcd(rn, n) = 1. Similarly, gcd(rm,m) = 1.

The Chinese Remainder Theorem guarantees that the above map ψ is a
bijection. Let N,M denote the sets of integers in [1, n], [1,m] which are
relatively prime to n,m, respectively. Note that N,M have ϕ(n), ϕ(m)
elements respectively. Then the previous paragraph guarantees that {k ∈
[1,mn] | gcd(k,mn) = 1} ⊆ ψ−1(N × M), and the right-hand set has
ϕ(n)ϕ(m) elements. Therefore, ϕ(nm) ≤ ϕ(n)ϕ(m).

Now suppose that gcd(k,mn) > 1. Let p be a prime dividing gcd(k,mn).
Then p divides mn so p divides either m or n. Without loss of generality,
suppose p divides m. Since rm = k − kmm, p also divides rm. Therefore,
gcd(rm,m) ≥ p > 1. This proves that ψ−1(N × M) ⊆ {k ∈ [1,mn] |
gcd(k,mn) = 1}, and therefore ϕ(n)ϕ(m) ≤ ϕ(nm).

Even though we have completed the proof, we remark that the last para-
graph did not actually require that m,n be relatively prime, only that
ψ([1,mn]) contains N ×M , which is certainly does. Therefore, in general
ϕ(nm) ≥ ϕ(n)ϕ(m). �

Now for the algebra.
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Exercise 3. Suppose F is a finite field with q elements, which we will henceforth
denote Fq (we will prove uniqueness up to isomorphism later). Prove that q = pn

for some n ∈ N and some prime p.

Proof. Since Fq is a finite field, it cannot have characteristic zero (otherwise it
would contain Q, which is infinite). Thus Fq has prime characteristic p, and
therefore contains Fp as a subfield. Recall that whenever we have an inclusion
of fields, we can view the larger one as a vector space over the smaller one. Thus
Fq is an Fp-vector space of some dimension n, which is necessarily finite since
Fq is finite. Let B = {v1, . . . , vn} be a basis for Fq over Fp. Then the function
Fnp → Fq given by (c1, . . . , cn) 7→

∑n
k=1 ckvk is a bijection since B is a basis.

Therefore q = pn. �

Problem 4. Prove that the number of k-th roots of unity in Fpf is equal to
gcd(k, pf − 1).

Proof. Let d = gcd(k, pf −1). Since F∗pf is cyclic, generated by g, and has order

pf − 1 divisible by d, it has d d-th roots of unity. Indeed, they are precisely the

elements g
j(pf−1)

d for 1 ≤ j ≤ d. Clearly, any k-th root is also a d-th root, but
the converse holds as well. Indeed, since d = kx+ (pf − 1)y, if a ∈ F∗pf is a k-th
root of unity, then

ad = akx+(pf−1)y = (ak)x + (ap
f−1)y = 1. �

Proof. A k-th root of unity in Fpf is a nonzero element x such that xk = 1.
Recall that F∗pf is cyclic and therefore generated by some element g of order

necessarily equal to pf − 1. So F∗pf = {gj | 1 ≤ j ≤ pf − 1}. Then the question

is, for which 1 ≤ j ≤ pf − 1 is (gj)k = 1? But (gj)k = 1 if and only if the order

of gj , which is pf−1
gcd(j,pf−1) , divides k. That is, if m(pf − 1) = k gcd(j, pf − 1) for

some m. In other words, if pf − 1 divides k gcd(j, pf − 1). This happens if and

only if pf−1
gcd(k,pf−1) divides gcd(j, pf − 1). Finally, we conclude that �

Problem 5. Suppose that α ∈ Fp2 is a root of the polynomial x2+ax+b ∈ Fp[x].

(a) Prove that αp is also a root of this polynomial.

(b) Prove that if α /∈ Fp, then a = −α− αp and b = αp+1.

(c) Prove that if α /∈ Fp and c, d ∈ Fp, then (cα + d)p+1 = d2 − acd + bc2

(which is an element of Fp).

(d) Let i be a square root of −1 in F192 . Use part (c) to find (2 + 3i)101 (that
is, write it in the form a+ bi for a, b ∈ F19.

Proof. Suppose that α ∈ F2
p is a root of the polynomial x2 + ax+ b ∈ Fp[x].
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(a) Since a, b ∈ Fp, we know that ap = a and bp = b by Fermat’s Little
Theorem. Moreover, since the Frobenius map is a homomorphism, we
find that

(α2 + aα+ b)p = (α2)p + apαp + bp = (αp)2 + aαp +b .

Thus, if α is a root of this quadratic, then the left-hand side is zero, and
therefore αp is also a root.

(b) If α /∈ Fp, then αp 6= α since Fp is precisely the roots of xp − x. Thus we
can factor the quadratic as

x2 + ax+ b = (x− α)(x− αp) = x2 + (−α− αp)x+ αp+1.

(c) Suppose α /∈ Fp and c, d ∈ Fp. Then cp = c and dp = d by Fermat’s Little
Theorem, and

(cα+ d)p+1 = (cα+ d)p(cα+ d)

= (cαp + d)(cα+ d)

= c2αp+1 + cd(α+ αp) + d2

= bc2 − acd+ d2.

(d) Since i =
√
−1 ∈ F192 \ F19, in the notation of part (b) and (c), we have

a = 0, b = 1 and c = 2, d = 3.

(2 + 3i)101 = (2 + 3i)20·5+1

=
(
(2 + 3i)19+1

)5
(2 + 3i)

= (22 + 32)5(2 + 3i)

= 14(2 + 3i)

= 9 + 4i. �

Problem 6. Consider (Z/pαZ)∗ (i.e., the group of units of this ring; the set of
integers relatively prime to pα with multiplication mod pα) where p is prime.

(a) Suppose p > 2, and let g be an integer that generates F∗p. Let α be any
integer greater than 1. Prove that either g or (p+1)g generates (Z/pαZ)∗.
Thus the latter is also a cyclic group.

(b) Prove that if α > 2, then (Z/2αZ)∗ is not cyclic, but that the number 5
generates a subgroup consisting of half of its elements, namely those which
are ≡ 1 (mod 4).

Proof. (a) Suppose p > 2 and g is an integer that generates F∗p, and let α > 1.
We claim that the orders of g, g(p + 1) in (Z/pαZ)∗ are each divisible by
(p−1). Indeed, suppose that gj ≡ 1 (mod pα). Then gj ≡ 1 mod p since
p | pα, and therefore (p− 1) | j since g has order (p− 1) in F∗p. A similar
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argument holds for the order of g(p + 1) as long as you recognize that
(p+ 1) ≡ 1 (mod p).

Our next claim is that either gp−1 or (g(p + 1))p−1 is not congruent to
1 (mod p2). Indeed, note that by the binomial expansion of (p + 1)p−1,
we see that it is congruent to p+ 1 (mod p2). Therefore, either gp−1 6≡ 1
(mod p2), or (g(p + 1))p−1 ≡ p + 1 (mod p2) 6≡ 1 (mod p2). So, pick
whichever one is not congruent to 1 (mod p2). For clarity, we will just
call this element h. Then from the proof in the previous paragraph we
can conclude hp−1 ≡ 1 (mod p), and so hp−1 = 1 + g1p, for some integer
g1, but from this paragraph, hp−1 6≡ 1 (mod p2), and therefore p does not
divide g1, so gcd(g1, p) = 1.

Suppose that hj ≡ 1 (mod pα). By the first paragraph, (p − 1) | j, and
so j = (p − 1)k for some integer k. Thus (1 + g1p)

k = h(p−1)k = hj ≡ 1
(mod pα). Expanding the left-hand side with the binomial theorem we
obtain

1 + kg1p+

k∑
n=2

(
k

n

)
gn1 p

n ≡ 1 (mod pα).

Thus pα divides

x = kg1p+

k∑
n=2

(
k

n

)
gn1 p

n.

We will prove by induction on m that pm divides k up to m = α− 1.

For the base case, notice that since α > 1 and pα divides x, so also does
p2. Moreover, p2 obviously divides all the terms after the first one in x,
so p2 must also divide kg1p. Therefore p divides kg1, and since p is prime
it divides k since it does not divide g1.

For the inductive step, suppose that 1 ≤ m < α − 1 and pm divides k.
Since m+ 2 ≤ α and pα divides x, so also does pm+2 divides x. We claim
that pm+2 divides all terms after the first one. Indeed, for 2 ≤ n ≤ k − 1,
pm divides k which in turn divides

(
k
n

)
, and p2 divides pn, and therefore

pm+2 divides
(
k
n

)
gn1 p

n. For the last term, notice that pk = pp
ml for some

integer l, and then notice that pm ≥ m + 2 for any prime p > 2 (this
is where the proof breaks for p = 2! Kind of subtle huh?). Thus pm+2

divides the last term gk1p
k. Finally, since pm+2 divides x and every term

of x besides the first, it must also divide kg1p. Since gcd(g1, p) = 1, this
implies that pm+1 divides k. By induction we have established that pα−1

divides k.

In conclusion, if hj ≡ 1 (mod pα), then j = (p − 1)k and pα−1 divides
k, and therefore pα − pα−1 = (p − 1)pα−1 divides j. Thus the order of h
is at least (p − 1)pα−1, but this is the order of the group (Z/pαZ)∗, so h
generates the group.

(b) Note that the order of (Z/2αZ)∗ is 2α−1 (since it just consists of the odd
integers less than 2α). Any cyclic group has at most one element of order
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2. Indeed, consider 〈g〉 with g of order n. Then gj has order n
gcd(n,j) = 2

if and only if n = 2 gcd(n, j). Thus n is even and gcd(n, j) = n
2 , but the

only 1 ≤ j ≤ n for which this occurs is j = n
2 .

So, if α > 2, then 2α−1 ± 1 are distinct elements of (Z/2αZ)∗. Moreover,
(2α−1 ± 1)2 = 2α ± 2 · 2α−1 + 1 ≡ 1 (mod 2α). Therefore (Z/2αZ)∗ has
two elements of order 2, and hence cannot be cyclic.

However, we will prove that 5 has order 2α−2 in (Z/2αZ)∗. Notice that
5 = 1 + 22, and suppose 5k ≡ 1 (mod 2α). Then 2α divides

x = k22 +

k∑
n=2

(
k

n

)
22n.

An induction argument nearly identical to the previous one guarantees
that k divides 2α−2. Therefore the order of 5 is 2α−2 (since it can’t have
order 2α−1 since it can’t be a generator since the group isn’t cyclic).

�
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