Algebraic Cryptography
 Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number $p>1$ is said to be prime if it has no divisors x between $1<x<p$. Prove that $p>1$ is prime if and only if for any $a, b \in \mathbb{Z}$, whenever p divides $a b$, either p divides a or p divides b.

Exercise 2. Prove that $[\mathbb{R}: \mathbb{Q}]=\infty$ (bonus: more precisely, the degree is $2^{\aleph_{0}}=\mathfrak{c}$). Explain why "most" elements of \mathbb{R} are transcendental over \mathbb{Q} for a suitable interpretation of "most".

Exercise 3. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree $n>2$, then f is reducible.

Exercise 4. Suppose α is a root of an irreducible polynomial of degree n over \mathbb{F}, so that $\mathbb{F}(\alpha)$ has degree n over \mathbb{F}. Find an \mathbb{F}-basis for $\mathbb{F}(\alpha)$ (you must prove it is a basis).

Problem 5. Prove that there are exactly $\frac{\left(p^{2}-p\right.}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_{p}. Then find all of the monic irreducible quadratic polynomials over \mathbb{F}_{3}, of which there should be 6 by the above formula.

Problem 6. Prove that a polynomial in $\mathbb{F}_{p}[x]$ has derivative identically zero if and only if it is the p-th power of a polynomial in $\mathbb{F}_{p}[x]$. Give a criterion for this to happen.

Problem 7. Let \mathbb{K} be the splitting field of the polynomial $X^{3}-2$ over \mathbb{F}. Find the degree of \mathbb{K} if \mathbb{F} is: (a) \mathbb{R}, (b) \mathbb{F}_{5}, (c) \mathbb{F}_{7}, (d) \mathbb{F}_{31}. You must provide justification for your answers.

