Algebraic Cryptography Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number p > 1 is said to be *prime* if it has no divisors x between 1 < x < p. Prove that p > 1 is prime if and only if for any $a, b \in \mathbb{Z}$, whenever p divides ab, either p divides a or p divides b.

Exercise 2. Prove that $[\mathbb{R} : \mathbb{Q}] = \infty$ (*bonus:* more precisely, the degree is $2^{\aleph_0} = \mathfrak{c}$). Explain why "most" elements of \mathbb{R} are transcendental over \mathbb{Q} for a suitable interpretation of "most".

Exercise 3. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree n > 2, then f is reducible.

Exercise 4. Suppose α is a root of an irreducible polynomial of degree *n* over \mathbb{F} , so that $\mathbb{F}(\alpha)$ has degree *n* over \mathbb{F} . Find an \mathbb{F} -basis for $\mathbb{F}(\alpha)$ (you must prove it is a basis).

Problem 5. Prove that there are exactly $\frac{(p^2-p)}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_p . Then find all of the monic irreducible quadratic polynomials over \mathbb{F}_3 , of which there should be 6 by the above formula.

Problem 6. Prove that a polynomial in $\mathbb{F}_p[x]$ has derivative identically zero if and only if it is the *p*-th power of a polynomial in $\mathbb{F}_p[x]$. Give a criterion for this to happen.

Problem 7. Let \mathbb{K} be the splitting field of the polynomial $X^3 - 2$ over \mathbb{F} . Find the degree of \mathbb{K} if \mathbb{F} is: (a) \mathbb{R} , (b) \mathbb{F}_5 , (c) \mathbb{F}_7 , (d) \mathbb{F}_{31} . You must provide justification for your answers.