Algebraic Cryptography Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number p > 1 is said to be *prime* if it has no divisors x between 1 < x < p. Prove that p > 1 is prime if and only if for any $a, b \in \mathbb{Z}$, whenever p divides ab, either p divides a or p divides b.

Proof. Suppose that p > 1 is prime and p divides ab, but does not divide a. Then since the only positive divisors of p are 1, p, the only common divisor of p and a is 1, thus gcd(p, a) = 1. By Bezout's identity, there are integers x, y for which 1 = gcd(p, a) = px + ay. Since p divides ab, we have ab = cp for some integer c. Therefore,

$$cpy = aby = b(1 - px) = b - px,$$

and hence b = p(x + cy), so p divides b.

For the other direction, suppose that whenever p divides ab, either p divides a or p divides b. Let p = ab be any factorization of p into positive integers. By hypothesis, either p divides a or p divides b. Without loss of generality, we will assume p divides a, and hence $p \leq a$, but then $b \leq 1$, and since a, b are positive integers, we must have b = 1 and hence a = p. Since any factorization of p has the form $p \cdot 1$, we must have that p is prime.

Exercise 2. Prove that $[\mathbb{R} : \mathbb{Q}] = \infty$ (*bonus:* more precisely, the degree is $2^{\aleph_0} = \mathfrak{c}$). Explain why "most" elements of \mathbb{R} are transcendental over \mathbb{Q} for a suitable interpretation of "most".

Proof. There are plenty of ways to show that $[\mathbb{R} : \mathbb{Q}] = \infty$, but I will pick an easy one that also shows that most elements of \mathbb{R} are transcendental over \mathbb{Q} . Suppose that \mathbb{F} is any extension of \mathbb{Q} of degree at most \aleph_0 (i.e., there is a countable basis). Then we will show the cardinality of \mathbb{F} is \aleph_0 .

Consider a basis \mathcal{B} for \mathbb{F} over \mathbb{Q} which has cardinality \aleph_0 . Then let $F(\mathcal{B})$ denote the set of finite subsets of \mathcal{B} , which we note also has cardinality \aleph_0 . Finally,

$$\mathbb{F} = \left\{ \sum_{x \in F} c_x x \mid F \in F(\mathcal{B}), c_x \in \mathbb{Q} \right\}$$

has cardinality \aleph_0 .

Since the cardinality of \mathbb{R} is $\mathfrak{c} = 2^{\aleph_0} > \aleph_0$, we must have that $[\mathbb{R} : \mathbb{Q}] > \aleph_0$ (in fact, the above argument actually shows it must be \mathfrak{c}). Finally, to show that "most" elements of \mathbb{R} are transcendental over \mathbb{Q} , it suffices to show there are only \aleph_0 algebraic elements. Indeed, there are countably many polynomials in $\mathbb{Q}[x]$ (identified with $\bigcup_{n=1}^{\infty} \mathbb{Q}^n$, which is a countable union of countable sets and is therefore countable itself). Each polynomial $p \in \mathbb{Q}[x]$ has finitely many (deg p) roots (not necessarily in p), and the countable union of finite sets is countable. Therefore there are only countably many algebraic elements over \mathbb{Q} .

Exercise 3. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree n > 2, then f is reducible.

Proof. Let $a_n \neq 0$ denote the coefficient of the x^n term of f. Let $sgn(a_n)$ be 1 if $a_n > 0$ and -1 if $a_n < 0$. Then

$$\lim_{x \to \pm \infty} \frac{f(x)}{x^n} = a_n$$

and hence

$$\lim_{x \to \pm \infty} f(x) = \operatorname{sgn}(a_n)(\pm \infty).$$

In particular, this entails that there exist $a \neq b \in \mathbb{R}$ so that f(a) < 0 and f(b) > 0. Therefore, on the interval I joining a, b, by the Intermediate Value Theorem there is some $c \in I$ for which f(c) = 0. In other words, c is a root of f, and so we may factor f(x) = (x - c)g(x) for $g \in \mathbb{R}[x]$ of degree strictly less than n. Therefore f is reducible.

Exercise 4. Suppose α is a root of an irreducible polynomial of degree *n* over \mathbb{F} , so that $\mathbb{F}(\alpha)$ has degree *n* over \mathbb{F} . Find an \mathbb{F} -basis for $\mathbb{F}(\alpha)$ (you must prove it is a basis).

Proof. Suppose that α is a root of the irreducible polynomial p of degree n over \mathbb{F} . Note that $\mathbb{F}(\alpha)$ is the smallest field containing \mathbb{F} and α . In particular, $\{\alpha^k\}_{k\in\mathbb{Z}}$ is an \mathbb{F} -spanning set for $\mathbb{F}(\alpha)$. We claim that $\{\alpha^k \mid 0 \leq k < n\}$ is a basis.

To see that this set is linearly independent, suppose that $\sum_{k=0}^{n-1} c_k \alpha^k = 0$ for some $c_k \in \mathbb{F}$. Then either α is a root of the polynomial $f(x) := \sum_{k=0}^{n-1} c_k x^k \in \mathbb{F}[x]$, or else f is the zero polynomial. Consider the ideal of polynomials for which α is a root. Since $\mathbb{F}[x]$ is a PID, this ideal is principally generated by some polynomial m_{α} . Therefore, its degree must be less than or equal to the degree of any polynomial for which α is a root, and it must divide any such polynomial. If α were a root of f, then m_{α} would have degree less than n and would also divide p, contradicting the irreducibility of p. Therefore, f is the zero polynomial, and therefore $\{\alpha^k \mid 0 \leq k < n\}$ is linearly independent. In fact, this shows that $m_{\alpha} = p$ (at least, up to multiplication by a unit, i.e., a nonzero element of \mathbb{F}). To see that $\{\alpha^k \mid 0 \leq k < n\}$ spans $\mathbb{F}(\alpha)$ it suffices to show that any other power of α can be written as a linear combination of these. For this, it suffices to show that α^{-1} and α^n can be written as a linear combination of these, and that any α^k with $k \geq n$ can be written as a linear combination of powers of α with a smaller nonnegative exponent. To this end, let $p(x) = \sum_{k=0}^{n} b_k x^k$. Note that $b_0 \neq 0$, for otherwise 0 is a root of p, contradicting irreducibility. Then $0 = \sum_{k=0}^{n} b_k \alpha^k$, and so multiplying by $\frac{\alpha^{-1}}{b_0}$ and rearranging, we find

$$\alpha^{-1} = -\sum_{k=1}^{n} \frac{b_k}{b_0} \alpha^{k-1} = -\sum_{k=0}^{n-1} \frac{b_{k+1}}{b_0} \alpha^k.$$

Similarly, we can divide $p(\alpha) = 0$ by b_n and rearrange to obtain

$$\alpha^n = -\sum_{k=0}^{n-1} \frac{b_k}{b_n} \alpha^k.$$

Thus $\{\alpha^k \mid 0 \le k < n\}$ is a spanning set, and therefore a basis, for $\mathbb{F}(\alpha)$.

Problem 5. Prove that there are exactly $\frac{(p^2-p)}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_p . Then find all of the monic irreducible quadratic polynomials over \mathbb{F}_3 , of which there should be 3 by the above formula.

Proof. Notice that there are p^2 monic quadratic polynomials over \mathbb{F}_p (because the first coefficient must be 1 and the other coefficients are a free choice). A monic quadratic polynomial over \mathbb{F}_p is reducible if and only if it has a root in \mathbb{F}_p if and only if it factors as (x-a)(x-b) for some $a, b \in \mathbb{F}_p$. Of these there are $\binom{p}{2} = \frac{p(p-1)}{2}$ with distinct roots and $\binom{p}{1} = p$ with a repeated root, for a total of $\frac{p(p+1)}{2}$ monic reducible quadratic polynomials over \mathbb{F}_p . Thus there are $p^2 - \frac{p(p+1)}{2} = \frac{p^2 - p}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_p .

From the previous paragraph, it suffices to find 3 monic quadratic polynomials over \mathbb{F}_3 for which none of 0, 1, 2 are a root. It is easily checked that the polynomials given below satisfy that criterion.

$$x^{2} + 1,$$

 $x^{2} + x + 2,$
 $x^{2} + 2x + 2.$

Problem 6. Prove that a polynomial in $\mathbb{F}_p[x]$ has derivative identically zero if and only if it is the *p*-th power of a polynomial in $\mathbb{F}_p[x]$. Give a criterion for this to happen.

2

Proof. Suppose that f is the p-th power of a polynomial $g \in \mathbb{F}_p[x]$. Note that we still have the chain rule, even for formal derivatives. Thus since $f = g^p$,

we have that $f' = pg^{p-1}g'$ which is identically zero since it is a multiple of p. Alternatively, if $g(x) = \sum_{k=0}^{n} c_k x^k$, then

$$f(x) = (g(x))^p = \left(\sum_{k=0}^n c_k x^k\right)^p = \sum_{k=0}^n c_k^p x^{kp},$$

thus

$$f'(x) = \sum_{k=1}^{n} c_k^p k p x^{kp-1} = p\left(\sum_{k=1}^{n} c_k^p k x^{kp-1}\right) = 0.$$

Now suppose that $f \in \mathbb{F}_p[x]$ with $f' \equiv 0$. If $f(x) = \sum_{k=0}^n c_k x^k$, then our hypothesis is:

$$f'(x) = \sum_{k=1}^{n} c_k k x^{k-1} \equiv 0$$

In other words, $c_k k = 0$ for all $1 \le k \le n$. Since \mathbb{F}_p is a field, this means that for $1 \le k \le n$, $c_k = 0$ if k is not a multiple of p. This shows that

$$f(x) = \sum_{k=0}^{m} c_{kp} x^{kp}$$

where km = n. Notice that if we set

$$g(x) := \sum_{k=0}^{m} c_{kp} x^k$$

then

$$(g(x))^p = \left(\sum_{k=0}^m c_{kp} x^k\right)^p = \sum_{k=0}^m c_{kp}^p x^{kp} = \sum_{k=0}^m c_{kp} x^{kp} = f(x),$$

where the second to last equality follows from Fermat's Little Theorem.

The criterion is that coefficients of powers of x which are not multiples of p are zero.

Problem 7. Let \mathbb{K} be the splitting field of the polynomial $x^3 - 2$ over \mathbb{F} . Find the degree of \mathbb{K} if \mathbb{F} is: (a) \mathbb{R} , (b) \mathbb{F}_5 , (c) \mathbb{F}_7 , (d) \mathbb{F}_{31} . You must provide justification for your answers.

Proof. Let \mathbb{F} and \mathbb{K} be as in the question.

(a) $x^3 - 2$ is reducible over \mathbb{R} since $\sqrt[3]{2} \in \mathbb{R}$ is a root. Thus

$$x^{3} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[3]{2}x + \sqrt[3]{2}^{2})$$

Moreover, the quadratic factor above is irreducible because it has no roots in \mathbb{R} since the discriminant is negative (in fact, its roots are $\omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2}$ where ω is a primitive cube root of unity. Once we adjoin either root, this polynomial will factor entirely. Thus $[\mathbb{K} : \mathbb{R}] = [\mathbb{R}(\omega) : \mathbb{R}] = 2$.

- (b) $x^3 2$ is reducible over \mathbb{F}_5 since 3 is a root, but it is not a repeated root since 3 is not a root of the derivative $3x^2$. Moreover, no other elements of \mathbb{F}_5 are roots of $x^3 - 2$. So $x^3 - 2 = (x - 3)(x^2 + 3x + 4)$, and the quadratic term is irreducible over \mathbb{F}_5 . Once we adjoin either root of this quadratic, the original polynomial splits. Let α be a root of $x^2 + 3x + 4$. Then $[\mathbb{K} : \mathbb{F}_5] = [\mathbb{F}(\alpha) : \mathbb{F}] = 2$.
- (c) $x^3 2$ has no roots over \mathbb{F}_7 and is therefore irreducible (because it has degree three; any reducible polynomial of degree three must split into linear factors or a linear and a quadratic. Either way, it has a root in the field). Let α be any of the roots of $x^3 2$. We claim that $x^3 2$ factors completely over $\mathbb{F}_7(\alpha)$. Indeed,

$$x^{3} - 2 = (x - \alpha)(x^{2} + \alpha x + \alpha^{2}) = (x - \alpha)(x - 2\alpha)(x - 4\alpha).$$

Therefore, $\mathbb{K} = \mathbb{F}_7(\alpha)$ and $[\mathbb{F}_7(\alpha) : \mathbb{F}_7] = 3$.

If you are wondering how we obtained the factorization above, we divide $x^3 - 2$ by $x - \alpha$, and then apply the quadratic formula (which we can do since we are not in characteristic 2) to the discriminant $\alpha^2 - 4\alpha^2 = (-3)\alpha^2$ has square root 2α , and the multiplicative inverse of 2 is 4 in \mathbb{F}_7 , so we obtain

$$\frac{-\alpha \pm \sqrt{\alpha^2 - 4\alpha^2}}{2} = 4(-\alpha \pm \sqrt{-3\alpha^2}) = 4\alpha(-1\pm 2) = 4\alpha, -12\alpha = 4\alpha, 2\alpha.$$

(d) Note that 4,7,20 are already roots of $x^3 - 2$ since $4^3 - 2 = 62 = 2 \cdot 31$, $7^3 - 2 = 341 = 31 \cdot 11$, and $20^3 - 2 = 7998 = 31 \cdot 258$. Thus $\mathbb{F}_7 = \mathbb{K}$ and hence $[\mathbb{K} : \mathbb{F}_7] = 1$.