Algebraic Cryptography
 Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number $p>1$ is said to be prime if it has no divisors x between $1<x<p$. Prove that $p>1$ is prime if and only if for any $a, b \in \mathbb{Z}$, whenever p divides $a b$, either p divides a or p divides b.

Proof. Suppose that $p>1$ is prime and p divides $a b$, but does not divide a. Then since the only positive divisors of p are $1, p$, the only common divisor of p and a is 1 , thus $\operatorname{gcd}(p, a)=1$. By Bezout's identity, there are integers x, y for which $1=\operatorname{gcd}(p, a)=p x+a y$. Since p divides $a b$, we have $a b=c p$ for some integer c. Therefore,

$$
c p y=a b y=b(1-p x)=b-p x,
$$

and hence $b=p(x+c y)$, so p divides b.
For the other direction, suppose that whenever p divides $a b$, either p divides a or p divides b. Let $p=a b$ be any factorization of p into positive integers. By hypothesis, either p divides a or p divides b. Without loss of generality, we will assume p divides a, and hence $p \leq a$, but then $b \leq 1$, and since a, b are positive integers, we must have $b=1$ and hence $a=p$. Since any factorization of p has the form $p \cdot 1$, we must have that p is prime.

Exercise 2. Prove that $[\mathbb{R}: \mathbb{Q}]=\infty$ (bonus: more precisely, the degree is $2^{\aleph_{0}}=\mathfrak{c}$). Explain why "most" elements of \mathbb{R} are transcendental over \mathbb{Q} for a suitable interpretation of "most".

Proof. There are plenty of ways to show that $[\mathbb{R}: \mathbb{Q}]=\infty$, but I will pick an easy one that also shows that most elements of \mathbb{R} are transcendental over \mathbb{Q}. Suppose that \mathbb{F} is any extension of \mathbb{Q} of degree at most \aleph_{0} (i.e., there is a countable basis). Then we will show the cardinality of \mathbb{F} is \aleph_{0}.

Consider a basis \mathcal{B} for \mathbb{F} over \mathbb{Q} which has cardinality \aleph_{0}. Then let $F(\mathcal{B})$ denote the set of finite subsets of \mathcal{B}, which we note also has cardinality \aleph_{0}. Finally,

$$
\mathbb{F}=\left\{\sum_{x \in F} c_{x} x \mid F \in F(\mathcal{B}), c_{x} \in \mathbb{Q}\right\}
$$

has cardinality \aleph_{0}.

Since the cardinality of \mathbb{R} is $\mathfrak{c}=2^{\aleph_{0}}>\aleph_{0}$, we must have that $[\mathbb{R}: \mathbb{Q}]>\aleph_{0}$ (in fact, the above argument actually shows it must be \mathfrak{c}. Finally, to show that "most" elements of \mathbb{R} are transcendental over \mathbb{Q}, it suffices to show there are only \aleph_{0} algebraic elements. Indeed, there are countably many polynomials in $\mathbb{Q}[x]$ (identified with $\bigcup_{n=1}^{\infty} \mathbb{Q}^{n}$, which is a countable union of countable sets and is therefore countable itself). Each polynomial $p \in \mathbb{Q}[x]$ has finitely many $(\operatorname{deg} p)$ roots (not necessarily in p), and the countable union of finite sets is countable. Therefore there are only countably many algebraic elements over \mathbb{Q}. Since \mathbb{R} has cardinality \mathfrak{c}, most (i.e., all but countably many) of its elements must be transcendental over \mathbb{Q}.

Exercise 3. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree $n>2$, then f is reducible.

Proof. Let $a_{n} \neq 0$ denote the coefficient of the x^{n} term of f. Let $\operatorname{sgn}\left(a_{n}\right)$ be 1 if $a_{n}>0$ and -1 if $a_{n}<0$. Then

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x^{n}}=a_{n}
$$

and hence

$$
\lim _{x \rightarrow \pm \infty} f(x)=\operatorname{sgn}\left(a_{n}\right)(\pm \infty)
$$

In particular, this entails that there exist $a \neq b \in \mathbb{R}$ so that $f(a)<0$ and $f(b)>0$. Therefore, on the interval I joining a, b, by the Intermediate Value Theorem there is some $c \in I$ for which $f(c)=0$. In other words, c is a root of f, and so we may factor $f(x)=(x-c) g(x)$ for $g \in \mathbb{R}[x]$ of degree strictly less than n. Therefore f is reducible.

Exercise 4. Suppose α is a root of an irreducible polynomial of degree n over \mathbb{F}, so that $\mathbb{F}(\alpha)$ has degree n over \mathbb{F}. Find an \mathbb{F}-basis for $\mathbb{F}(\alpha)$ (you must prove it is a basis).

Proof. Suppose that α is a root of the irreducible polynomial p of degree n over \mathbb{F}. Note that $\mathbb{F}(\alpha)$ is the smallest field containing \mathbb{F} and α. In particular, $\left\{\alpha^{k}\right\}_{k \in \mathbb{Z}}$ is an \mathbb{F}-spanning set for $\mathbb{F}(\alpha)$. We claim that $\left\{\alpha^{k} \mid 0 \leq k<n\right\}$ is a basis.

To see that this set is linearly independent, suppose that $\sum_{k=0}^{n-1} c_{k} \alpha^{k}=0$ for some $c_{k} \in \mathbb{F}$. Then either α is a root of the polynomial $f(x):=\sum_{k=0}^{n-1} c_{k} x^{k} \in$ $\mathbb{F}[x]$, or else f is the zero polynomial. Consider the ideal of polynomials for which α is a root. Since $\mathbb{F}[x]$ is a PID, this ideal is principally generated by some polynomial m_{α}. Therefore, its degree must be less than or equal to the degree of any polynomial for which α is a root, and it must divide any such polynomial. If α were a root of f, then m_{α} would have degree less than n and would also divide p, contradicting the irreducibility of p. Therefore, f is the zero polynomial, and therefore $\left\{\alpha^{k} \mid 0 \leq k<n\right\}$ is linearly independent. In fact, this shows that $m_{\alpha}=p$ (at least, up to multiplication by a unit, i.e., a nonzero element of $\mathbb{F})$.

To see that $\left\{\alpha^{k} \mid 0 \leq k<n\right\}$ spans $\mathbb{F}(\alpha)$ it suffices to show that any other power of α can be written as a linear combination of these. For this, it suffices to show that α^{-1} and α^{n} can be written as a linear combination of these, and that any α^{k} with $k \geq n$ can be written as a linear combination of powers of α with a smaller nonnegative exponent. To this end, let $p(x)=\sum_{k=0}^{n} b_{k} x^{k}$. Note that $b_{0} \neq 0$, for otherwise 0 is a root of p, contradicting irreducibility. Then $0=\sum_{k=0}^{n} b_{k} \alpha^{k}$, and so multiplying by $\frac{\alpha^{-1}}{b_{0}}$ and rearranging, we find

$$
\alpha^{-1}=-\sum_{k=1}^{n} \frac{b_{k}}{b_{0}} \alpha^{k-1}=-\sum_{k=0}^{n-1} \frac{b_{k+1}}{b_{0}} \alpha^{k} .
$$

Similarly, we can divide $p(\alpha)=0$ by b_{n} and rearrange to obtain

$$
\alpha^{n}=-\sum_{k=0}^{n-1} \frac{b_{k}}{b_{n}} \alpha^{k} .
$$

Thus $\left\{\alpha^{k} \mid 0 \leq k<n\right\}$ is a spanning set, and therefore a basis, for $\mathbb{F}(\alpha)$.
Problem 5. Prove that there are exactly $\frac{\left(p^{2}-p\right)}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_{p}. Then find all of the monic irreducible quadratic polynomials over \mathbb{F}_{3}, of which there should be 3 by the above formula.

Proof. Notice that there are p^{2} monic quadratic polynomials over \mathbb{F}_{p} (because the first coefficient must be 1 and the other coefficients are a free choice). A monic quadratic polynomial over \mathbb{F}_{p} is reducible if and only if it has a root in \mathbb{F}_{p} if and only if it factors as $(x-a)(x-b)$ for some $a, b \in \mathbb{F}_{p}$. Of these there are $\binom{p}{2}=\frac{p(p-1)}{2}$ with distinct roots and $\binom{p}{1}=p$ with a repeated root, for a total of $\frac{p(p+1)}{2}$ monic reducible quadratic polynomials over \mathbb{F}_{p}. Thus there are $p^{2}-\frac{p(p+1)}{2}=\frac{p^{2}-p}{2}$ monic irreducible quadratic polynomials over \mathbb{F}_{p}.

From the previous paragraph, it suffices to find 3 monic quadratic polynomials over \mathbb{F}_{3} for which none of $0,1,2$ are a root. It is easily checked that the polynomials given below satisfy that criterion.

$$
\begin{gathered}
x^{2}+1 \\
x^{2}+x+2 \\
x^{2}+2 x+2
\end{gathered}
$$

Problem 6. Prove that a polynomial in $\mathbb{F}_{p}[x]$ has derivative identically zero if and only if it is the p-th power of a polynomial in $\mathbb{F}_{p}[x]$. Give a criterion for this to happen.

Proof. Suppose that f is the p-th power of a polynomial $g \in \mathbb{F}_{p}[x]$. Note that we still have the chain rule, even for formal derivatives. Thus since $f=g^{p}$,
we have that $f^{\prime}=p g^{p-1} g^{\prime}$ which is identically zero since it is a multiple of p. Alternatively, if $g(x)=\sum_{k=0}^{n} c_{k} x^{k}$, then

$$
f(x)=(g(x))^{p}=\left(\sum_{k=0}^{n} c_{k} x^{k}\right)^{p}=\sum_{k=0}^{n} c_{k}^{p} x^{k p},
$$

thus

$$
f^{\prime}(x)=\sum_{k=1}^{n} c_{k}^{p} k p x^{k p-1}=p\left(\sum_{k=1}^{n} c_{k}^{p} k x^{k p-1}\right)=0 .
$$

Now suppose that $f \in \mathbb{F}_{p}[x]$ with $f^{\prime} \equiv 0$. If $f(x)=\sum_{k=0}^{n} c_{k} x^{k}$, then our hypothesis is:

$$
f^{\prime}(x)=\sum_{k=1}^{n} c_{k} k x^{k-1} \equiv 0 .
$$

In other words, $c_{k} k=0$ for all $1 \leq k \leq n$. Since \mathbb{F}_{p} is a field, this means that for $1 \leq k \leq n, c_{k}=0$ if k is not a multiple of p. This shows that

$$
f(x)=\sum_{k=0}^{m} c_{k p} x^{k p}
$$

where $k m=n$. Notice that if we set

$$
g(x):=\sum_{k=0}^{m} c_{k p} x^{k}
$$

then

$$
(g(x))^{p}=\left(\sum_{k=0}^{m} c_{k p} x^{k}\right)^{p}=\sum_{k=0}^{m} c_{k p}^{p} x^{k p}=\sum_{k=0}^{m} c_{k p} x^{k p}=f(x),
$$

where the second to last equality follows from Fermat's Little Theorem.
The criterion is that coefficients of powers of x which are not multiples of p are zero.

Problem 7. Let \mathbb{K} be the splitting field of the polynomial $x^{3}-2$ over \mathbb{F}. Find the degree of \mathbb{K} if \mathbb{F} is: (a) \mathbb{R}, (b) \mathbb{F}_{5}, (c) \mathbb{F}_{7}, (d) \mathbb{F}_{31}. You must provide justification for your answers.

Proof. Let \mathbb{F} and \mathbb{K} be as in the question.
(a) $x^{3}-2$ is reducible over \mathbb{R} since $\sqrt[3]{2} \in \mathbb{R}$ is a root. Thus

$$
x^{3}-2=(x-\sqrt[3]{2})\left(x^{2}+\sqrt[3]{2} x+\sqrt[3]{2}^{2}\right)
$$

Moreover, the quadratic factor above is irreducible because it has no roots in \mathbb{R} since the discriminant is negative (in fact, its roots are $\omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}$ where ω is a primitive cube root of unity. Once we adjoin either root, this polynomial will factor entirely. Thus $[\mathbb{K}: \mathbb{R}]=[\mathbb{R}(\omega): \mathbb{R}]=2$.
(b) $x^{3}-2$ is reducible over \mathbb{F}_{5} since 3 is a root, but it is not a repeated root since 3 is not a root of the derivative $3 x^{2}$. Moreover, no other elements of \mathbb{F}_{5} are roots of $x^{3}-2$. So $x^{3}-2=(x-3)\left(x^{2}+3 x+4\right)$, and the quadratic term is irreducible over \mathbb{F}_{5}. Once we adjoin either root of this quadratic, the original polynomial splits. Let α be a root of $x^{2}+3 x+4$. Then $\left[\mathbb{K}: \mathbb{F}_{5}\right]=[\mathbb{F}(\alpha): \mathbb{F}]=2$.
(c) $x^{3}-2$ has no roots over \mathbb{F}_{7} and is therefore irreducible (because it has degree three; any reducible polynomial of degree three must split into linear factors or a linear and a quadratic. Either way, it has a root in the field). Let α be any of the roots of $x^{3}-2$. We claim that $x^{3}-2$ factors completely over $\mathbb{F}_{7}(\alpha)$. Indeed,

$$
x^{3}-2=(x-\alpha)\left(x^{2}+\alpha x+\alpha^{2}\right)=(x-\alpha)(x-2 \alpha)(x-4 \alpha) .
$$

Therefore, $\mathbb{K}=\mathbb{F}_{7}(\alpha)$ and $\left[\mathbb{F}_{7}(\alpha): \mathbb{F}_{7}\right]=3$.
If you are wondering how we obtained the factorization above, we divide $x^{3}-2$ by $x-\alpha$, and then apply the quadratic formula (which we can do since we are not in characteristic 2) to the discriminant $\alpha^{2}-4 \alpha^{2}=(-3) \alpha^{2}$ has square root 2α, and the multiplicative inverse of 2 is 4 in \mathbb{F}_{7}, so we obtain
$\frac{-\alpha \pm \sqrt{\alpha^{2}-4 \alpha^{2}}}{2}=4\left(-\alpha \pm \sqrt{-3 \alpha^{2}}\right)=4 \alpha(-1 \pm 2)=4 \alpha,-12 \alpha=4 \alpha, 2 \alpha$.
(d) Note that $4,7,20$ are already roots of $x^{3}-2$ since $4^{3}-2=62=2 \cdot 31$, $7^{3}-2=341=31 \cdot 11$, and $20^{3}-2=7998=31 \cdot 258$. Thus $\mathbb{F}_{7}=\mathbb{K}$ and hence $\left[\mathbb{K}: \mathbb{F}_{7}\right]=1$.

