
Algebraic Cryptography

Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number p > 1 is said to be prime if it has
no divisors x between 1 < x < p. Prove that p > 1 is prime if and only if for
any a, b ∈ Z, whenever p divides ab, either p divides a or p divides b.

Proof. Suppose that p > 1 is prime and p divides ab, but does not divide a.
Then since the only positive divisors of p are 1, p, the only common divisor of p
and a is 1, thus gcd(p, a) = 1. By Bezout’s identity, there are integers x, y for
which 1 = gcd(p, a) = px + ay. Since p divides ab, we have ab = cp for some
integer c. Therefore,

cpy = aby = b(1− px) = b− px,

and hence b = p(x+ cy), so p divides b.
For the other direction, suppose that whenever p divides ab, either p divides

a or p divides b. Let p = ab be any factorization of p into positive integers. By
hypothesis, either p divides a or p divides b. Without loss of generality, we will
assume p divides a, and hence p ≤ a, but then b ≤ 1, and since a, b are positive
integers, we must have b = 1 and hence a = p. Since any factorization of p has
the form p · 1, we must have that p is prime. �

Exercise 2. Prove that [R : Q] = ∞ (bonus: more precisely, the degree is
2ℵ0 = c). Explain why “most” elements of R are transcendental over Q for a
suitable interpretation of “most”.

Proof. There are plenty of ways to show that [R : Q] = ∞, but I will pick
an easy one that also shows that most elements of R are transcendental over
Q. Suppose that F is any extension of Q of degree at most ℵ0 (i.e., there is a
countable basis). Then we will show the cardinality of F is ℵ0.

Consider a basis B for F over Q which has cardinality ℵ0. Then let F (B)
denote the set of finite subsets of B, which we note also has cardinality ℵ0.
Finally,

F =

{∑
x∈F

cxx

∣∣∣∣∣ F ∈ F (B), cx ∈ Q

}
has cardinality ℵ0.
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Since the cardinality of R is c = 2ℵ0 > ℵ0, we must have that [R : Q] > ℵ0
(in fact, the above argument actually shows it must be c). Finally, to show
that “most” elements of R are transcendental over Q, it suffices to show there
are only ℵ0 algebraic elements. Indeed, there are countably many polynomials
in Q[x] (identified with

⋃∞
n=1 Qn, which is a countable union of countable sets

and is therefore countable itself). Each polynomial p ∈ Q[x] has finitely many
(deg p) roots (not necessarily in p), and the countable union of finite sets is
countable. Therefore there are only countably many algebraic elements over Q.
Since R has cardinality c, most (i.e., all but countably many) of its elements
must be transcendental over Q. �

Exercise 3. Prove that if a polynomial f ∈ R[x] has odd degree n > 2, then f
is reducible.

Proof. Let an 6= 0 denote the coefficient of the xn term of f . Let sgn(an) be 1
if an > 0 and −1 if an < 0. Then

lim
x→±∞

f(x)

xn
= an

and hence
lim

x→±∞
f(x) = sgn(an)(±∞).

In particular, this entails that there exist a 6= b ∈ R so that f(a) < 0 and
f(b) > 0. Therefore, on the interval I joining a, b, by the Intermediate Value
Theorem there is some c ∈ I for which f(c) = 0. In other words, c is a root of
f , and so we may factor f(x) = (x − c)g(x) for g ∈ R[x] of degree strictly less
than n. Therefore f is reducible. �

Exercise 4. Suppose α is a root of an irreducible polynomial of degree n over
F, so that F(α) has degree n over F. Find an F-basis for F(α) (you must prove
it is a basis).

Proof. Suppose that α is a root of the irreducible polynomial p of degree n
over F. Note that F(α) is the smallest field containing F and α. In particular,
{αk}k∈Z is an F-spanning set for F(α). We claim that {αk | 0 ≤ k < n} is a
basis.

To see that this set is linearly independent, suppose that
∑n−1
k=0 ckα

k = 0 for

some ck ∈ F. Then either α is a root of the polynomial f(x) :=
∑n−1
k=0 ckx

k ∈
F[x], or else f is the zero polynomial. Consider the ideal of polynomials for
which α is a root. Since F[x] is a PID, this ideal is principally generated by
some polynomial mα. Therefore, its degree must be less than or equal to the
degree of any polynomial for which α is a root, and it must divide any such
polynomial. If α were a root of f , then mα would have degree less than n and
would also divide p, contradicting the irreducibility of p. Therefore, f is the
zero polynomial, and therefore {αk | 0 ≤ k < n} is linearly independent. In
fact, this shows that mα = p (at least, up to multiplication by a unit, i.e., a
nonzero element of F).
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To see that {αk | 0 ≤ k < n} spans F(α) it suffices to show that any other
power of α can be written as a linear combination of these. For this, it suffices
to show that α−1 and αn can be written as a linear combination of these, and
that any αk with k ≥ n can be written as a linear combination of powers of α
with a smaller nonnegative exponent. To this end, let p(x) =

∑n
k=0 bkx

k. Note
that b0 6= 0, for otherwise 0 is a root of p, contradicting irreducibility. Then

0 =
∑n
k=0 bkα

k, and so multiplying by α−1

b0
and rearranging, we find

α−1 = −
n∑
k=1

bk
b0
αk−1 = −

n−1∑
k=0

bk+1

b0
αk.

Similarly, we can divide p(α) = 0 by bn and rearrange to obtain

αn = −
n−1∑
k=0

bk
bn
αk.

Thus {αk | 0 ≤ k < n} is a spanning set, and therefore a basis, for F(α). �

Problem 5. Prove that there are exactly (p2−p)
2 monic irreducible quadratic

polynomials over Fp. Then find all of the monic irreducible quadratic polyno-
mials over F3, of which there should be 3 by the above formula.

Proof. Notice that there are p2 monic quadratic polynomials over Fp (because
the first coefficient must be 1 and the other coefficients are a free choice). A
monic quadratic polynomial over Fp is reducible if and only if it has a root in
Fp if and only if it factors as (x − a)(x − b) for some a, b ∈ Fp. Of these there

are
(
p
2

)
= p(p−1)

2 with distinct roots and
(
p
1

)
= p with a repeated root, for a

total of p(p+1)
2 monic reducible quadratic polynomials over Fp. Thus there are

p2 − p(p+1)
2 = p2−p

2 monic irreducible quadratic polynomials over Fp.
From the previous paragraph, it suffices to find 3 monic quadratic polyno-

mials over F3 for which none of 0, 1, 2 are a root. It is easily checked that the
polynomials given below satisfy that criterion.

x2 + 1,

x2 + x+ 2,

x2 + 2x+ 2. �

Problem 6. Prove that a polynomial in Fp[x] has derivative identically zero if
and only if it is the p-th power of a polynomial in Fp[x]. Give a criterion for
this to happen.

Proof. Suppose that f is the p-th power of a polynomial g ∈ Fp[x]. Note that
we still have the chain rule, even for formal derivatives. Thus since f = gp,
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we have that f ′ = pgp−1g′ which is identically zero since it is a multiple of p.
Alternatively, if g(x) =

∑n
k=0 ckx

k, then

f(x) = (g(x))p =

(
n∑
k=0

ckx
k

)p
=

n∑
k=0

cpkx
kp,

thus

f ′(x) =

n∑
k=1

cpkkpx
kp−1 = p

(
n∑
k=1

cpkkx
kp−1

)
= 0.

Now suppose that f ∈ Fp[x] with f ′ ≡ 0. If f(x) =
∑n
k=0 ckx

k, then our
hypothesis is:

f ′(x) =

n∑
k=1

ckkx
k−1 ≡ 0.

In other words, ckk = 0 for all 1 ≤ k ≤ n. Since Fp is a field, this means that
for 1 ≤ k ≤ n, ck = 0 if k is not a multiple of p. This shows that

f(x) =

m∑
k=0

ckpx
kp

where km = n. Notice that if we set

g(x) :=

m∑
k=0

ckpx
k

then

(g(x))p =

(
m∑
k=0

ckpx
k

)p
=

m∑
k=0

cpkpx
kp =

m∑
k=0

ckpx
kp = f(x),

where the second to last equality follows from Fermat’s Little Theorem.
The criterion is that coefficients of powers of x which are not multiples of p

are zero. �

Problem 7. Let K be the splitting field of the polynomial x3 − 2 over F. Find
the degree of K if F is: (a) R, (b) F5, (c) F7, (d) F31. You must provide
justification for your answers.

Proof. Let F and K be as in the question.

(a) x3 − 2 is reducible over R since 3
√

2 ∈ R is a root. Thus

x3 − 2 = (x− 3
√

2)(x2 +
3
√

2x+
3
√

2
2
)

Moreover, the quadratic factor above is irreducible because it has no roots
in R since the discriminant is negative (in fact, its roots are ω 3

√
2, ω2 3

√
2

where ω is a primitive cube root of unity. Once we adjoin either root, this
polynomial will factor entirely. Thus [K : R] = [R(ω) : R] = 2.
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(b) x3 − 2 is reducible over F5 since 3 is a root, but it is not a repeated root
since 3 is not a root of the derivative 3x2. Moreover, no other elements
of F5 are roots of x3 − 2. So x3 − 2 = (x − 3)(x2 + 3x + 4), and the
quadratic term is irreducible over F5. Once we adjoin either root of this
quadratic, the original polynomial splits. Let α be a root of x2 + 3x+ 4.
Then [K : F5] = [F(α) : F] = 2.

(c) x3 − 2 has no roots over F7 and is therefore irreducible (because it has
degree three; any reducible polynomial of degree three must split into
linear factors or a linear and a quadratic. Either way, it has a root in the
field). Let α be any of the roots of x3 − 2. We claim that x3 − 2 factors
completely over F7(α). Indeed,

x3 − 2 = (x− α)(x2 + αx+ α2) = (x− α)(x− 2α)(x− 4α).

Therefore, K = F7(α) and [F7(α) : F7] = 3.

If you are wondering how we obtained the factorization above, we divide
x3 − 2 by x− α, and then apply the quadratic formula (which we can do
since we are not in characteristic 2) to the discriminant α2−4α2 = (−3)α2

has square root 2α, and the multiplicative inverse of 2 is 4 in F7, so we
obtain

−α±
√
α2 − 4α2

2
= 4(−α±

√
−3α2) = 4α(−1± 2) = 4α,−12α = 4α, 2α.

(d) Note that 4, 7, 20 are already roots of x3 − 2 since 43 − 2 = 62 = 2 · 31,
73 − 2 = 341 = 31 · 11, and 203 − 2 = 7998 = 31 · 258. Thus F7 = K and
hence [K : F7] = 1.

�
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