Algebraic Cryptography
Homework 4

Due Friday, 13 October 2017

Problem 1. Recall that a natural number p > 1 is said to be prime if it has
no divisors = between 1 < x < p. Prove that p > 1 is prime if and only if for
any a,b € Z, whenever p divides ab, either p divides a or p divides b.

Proof. Suppose that p > 1 is prime and p divides ab, but does not divide a.
Then since the only positive divisors of p are 1, p, the only common divisor of p
and a is 1, thus ged(p,a) = 1. By Bezout’s identity, there are integers x,y for
which 1 = ged(p,a) = pxr + ay. Since p divides ab, we have ab = ¢p for some
integer c. Therefore,

cpy = aby = b(1 — px) = b — p,

and hence b = p(x + cy), so p divides b.

For the other direction, suppose that whenever p divides ab, either p divides
a or p divides b. Let p = ab be any factorization of p into positive integers. By
hypothesis, either p divides a or p divides b. Without loss of generality, we will
assume p divides a, and hence p < a, but then b < 1, and since a, b are positive
integers, we must have b = 1 and hence a = p. Since any factorization of p has
the form p - 1, we must have that p is prime. |

Exercise 2. Prove that [R : Q] = oo (bonus: more precisely, the degree is
280 = ¢). Explain why “most” elements of R are transcendental over Q for a
suitable interpretation of “most”.

Proof. There are plenty of ways to show that [R : Q] = oo, but I will pick
an easy one that also shows that most elements of R are transcendental over
Q. Suppose that F is any extension of Q of degree at most Xy (i.e., there is a
countable basis). Then we will show the cardinality of T is X,.

Consider a basis B for F over Q which has cardinality Ng. Then let F(B)
denote the set of finite subsets of B, which we note also has cardinality X.

Finally,
F = {Z Ca

zeF

FeF(B),c, € Q}

has cardinality Ro.



Since the cardinality of R is ¢ = 2% > Nj, we must have that [R : Q] > R
(in fact, the above argument actually shows it must be ¢). Finally, to show
that “most” elements of R are transcendental over Q, it suffices to show there
are only Ny algebraic elements. Indeed, there are countably many polynomials
in Q[z] (identified with (J;- ; Q™, which is a countable union of countable sets
and is therefore countable itself). Each polynomial p € Q[x] has finitely many
(deg p) roots (not necessarily in p), and the countable union of finite sets is
countable. Therefore there are only countably many algebraic elements over Q.
Since R has cardinality ¢, most (i.e., all but countably many) of its elements
must be transcendental over Q. |

Exercise 3. Prove that if a polynomial f € R[z] has odd degree n > 2, then f
is reducible.

Proof. Let a, # 0 denote the coefficient of the ™ term of f. Let sgn(a,) be 1
if a, > 0 and —1 if a,, < 0. Then

lim 1)

r—+oo M
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and hence

i f(x) = sgn(a,) (00)
In particular, this entails that there exist a # b € R so that f(a) < 0 and
f(b) > 0. Therefore, on the interval I joining a,b, by the Intermediate Value
Theorem there is some ¢ € I for which f(¢) = 0. In other words, ¢ is a root of
f, and so we may factor f(z) = (x — ¢)g(z) for g € R[x] of degree strictly less
than n. Therefore f is reducible. |

Exercise 4. Suppose « is a root of an irreducible polynomial of degree n over
F, so that F(«a) has degree n over F. Find an F-basis for F(«) (you must prove
it is a basis).

Proof. Suppose that « is a root of the irreducible polynomial p of degree n
over F. Note that F(«) is the smallest field containing F and «. In particular,
{a*}1ez is an F-spanning set for F(a). We claim that {a* | 0 < k < n} is a
basis.

To see that this set is linearly independent, suppose that Zz;é cra¥ =0 for
some ¢ € F. Then either « is a root of the polynomial f(z) := Zz;é crat €
F[x], or else f is the zero polynomial. Consider the ideal of polynomials for
which « is a root. Since F[z] is a PID, this ideal is principally generated by
some polynomial m,. Therefore, its degree must be less than or equal to the
degree of any polynomial for which « is a root, and it must divide any such
polynomial. If o were a root of f, then m, would have degree less than n and
would also divide p, contradicting the irreducibility of p. Therefore, f is the
zero polynomial, and therefore {a* | 0 < k < n} is linearly independent. In
fact, this shows that m, = p (at least, up to multiplication by a unit, i.e., a
nonzero element of F).



To see that {a* | 0 < k < n} spans F(«) it suffices to show that any other
power of o can be written as a linear combination of these. For this, it suffices
to show that a~! and o™ can be written as a linear combination of these, and
that any o* with & > n can be written as a linear combination of powers of a
with a smaller nonnegative exponent. To this end, let p(z) = > j_, brz”. Note
that by # 0, for otherwise 0 is a root of p, contradicting irreducibility. Then
0= ZZ:O bra*, and so multiplying by ab—;l and rearranging, we find

Zbk k-1 _ Zbk+1

Similarly, we can divide p(a) = 0 by b,, and rearrange to obtain

bk
no__ _ k
“ = by
k=0
Thus {a* | 0 < k < n} is a spanning set, and therefore a basis, for F(a). |
Problem 5. Prove that there are exactly (p 2; ) monic irreducible quadratic

polynomials over F,. Then find all of the monic irreducible quadratic polyno-
mials over F3, of which there should be 3 by the above formula.

Proof. Notice that there are p?> monic quadratic polynomials over F, (because
the first coefficient must be 1 and the other coefficients are a free choice). A
monic quadratic polynomial over IF,, is reducible if and only if it has a root in
F, if and only if it factors as (z — a)(x — b) for some a,b € F,,. Of these there

are (g) = @ with distinct roots and (f) = p with a repeated root, for a

total of w monic reducible quadratic polynomials over IF,. Thus there are

2
p? — w = % monic irreducible quadratic polynomials over [F,,.

From the previous paragraph, it suffices to find 3 monic quadratic polyno-
mials over F3 for which none of 0,1,2 are a root. It is easily checked that the
polynomials given below satisfy that criterion.

2 +1,
2 +x+ 2,
2?22 + 2. |
Problem 6. Prove that a polynomial in IF,[x] has derivative identically zero if

and only if it is the p-th power of a polynomial in F,[x]. Give a criterion for
this to happen.

Proof. Suppose that f is the p-th power of a polynomial g € F,[z]. Note that
we still have the chain rule, even for formal derivatives. Thus since f = g¢P,



we have that f/ = pgP~'¢’ which is identically zero since it is a multiple of p.
Alternatively, if g(z) = Y _, ckz”, then

n p n
@) = (o) = (Z w) =3 gt

k=0 k=0

thus
f(z)= Zcikpmkp—l =p (Z czkxkp_1> =0.
k=1 k=1
Now suppose that f € F,[z] with f = 0. If f(z) = Y.}_, cxz®, then our
hypothesis is:
fl(x) = chkxkfl =0.
k=1

In other words, cyk = 0 for all 1 < k£ < n. Since F,, is a field, this means that
for 1 <k <mn, ¢ =0if k is not a multiple of p. This shows that

m

flx) = Z Ckpl"kp

k=0

where km = n. Notice that if we set

m
g(z) = chpxk
k=0

then

m

(9(2))" = (Z Ckp$k> =D 't =) et = f(2),
k=0 0

k=0 k=
where the second to last equality follows from Fermat’s Little Theorem.
The criterion is that coefficients of powers of  which are not multiples of p
are zero. |

Problem 7. Let K be the splitting field of the polynomial 2% — 2 over F. Find
the degree of K if F is: (a) R, (b) Fs, (c) Fr, (d) F3;. You must provide
justification for your answers.

Proof. Let F and K be as in the question.

(a) x® — 2 is reducible over R since /2 € R is a root. Thus

x3—2:(x—\‘7§)(x2+\3/§x+\3/§2)

Moreover, the quadratic factor above is irreducible because it has no roots
in R since the discriminant is negative (in fact, its roots are w\‘q’/i, w22
where w is a primitive cube root of unity. Once we adjoin either root, this
polynomial will factor entirely. Thus [K : R] = [R(w) : R] = 2.



(b)

2% — 2 is reducible over Fj since 3 is a root, but it is not a repeated root
since 3 is not a root of the derivative 3x2. Moreover, no other elements
of F5 are roots of 23 — 2. So 2® — 2 = (x — 3)(2? + 3z + 4), and the
quadratic term is irreducible over F5. Once we adjoin either root of this
quadratic, the original polynomial splits. Let a be a root of 22 + 3z + 4.
Then [K: F5] = [F(a) : F] = 2.

2% — 2 has no roots over F; and is therefore irreducible (because it has
degree three; any reducible polynomial of degree three must split into
linear factors or a linear and a quadratic. Either way, it has a root in the
field). Let a be any of the roots of x® — 2. We claim that x3 — 2 factors
completely over F7(«). Indeed,

23— 2= (2 —a)(2® +ax+a?) = (r — a)(z — 2a)(z — 4a).

Therefore, K = F7(a) and [Fr(«) : F;] = 3.

If you are wondering how we obtained the factorization above, we divide
2% — 2 by x — a, and then apply the quadratic formula (which we can do
since we are not in characteristic 2) to the discriminant a? —4a? = (—3)a?
has square root 2«, and the multiplicative inverse of 2 is 4 in F7, so we
obtain

—atva?—4a?
5 -

4(—at v —-3a2) =4a(-1+£2) = 4o, —12a = 4a, 20.

Note that 4,7,20 are already roots of 23 — 2 since 4% — 2 = 62 = 2 - 31,
73 —2 =341 = 31-11, and 203 — 2 = 7998 = 31 - 258. Thus F; = K and
hence [K : F7] = 1.



