
Algebraic Cryptography

Homework 3

Due Monday, 25 September 2017

Note: this is graduate school, so due dates for homework are somewhat flex-
ible (within reason). I trust you to make smart decisions regarding your un-
derstanding of the material. I encourage you to do these problems before the
exam, but if you are having trouble completing the write-up while studying, that
is okay.

Problem 1. Exercises 1,3,5 §3 of Chapter 2 (with proofs / arguments)

Solution to #1. (a) Computing 3n is O(n2). (See the solution to part (c)).

(b) Computing nn is O(n2 ln2 n)(See the solution to part (c)).

(c) We will show that computing kn is O(n2 ln2 k). Let us consider our algo-
rithm:

• Compute n in binary (O(lnn) bit ops).

• Set l0 := k, res0 := 1.

• For 0 ≤ j ≤ m = blog2 nc
– Set lj+1 := l2j (O(ln2 lj) bit ops).

– If the j-th bit of n in binary is 1, set resj+1 := resj · lj , otherwise
resj+1 := resj (O(ln resj ln lj) bit ops).

• Result: resm+1.

Okay, so, this entire algorithm

O

lnn +

m∑
j=0

ln2 lj + ln resj ln lj


bit operations. But notice that lj = k2

j

and

resj ≤
j−1∏
i=0

li =

j−1∏
i=0

k2
i

= k
∑j−1

i=0 2i ≤ k2
j

.

1



Therefore, ln2 lj = (2j)2 ln2 k and ln resj ln lj ≤ (2j)2 ln2 k Hence the num-
ber of bit operations is

O

lnn + 2 ln2 k

m∑
j=0

(2j)2


But the sum of those squares of powers of 2 is bounded by (2m+1)2 =
Θ(n2). Thus, the lnn term is negligible in comparison, and we find that
the number of bit operations is O(n2 ln2 k). Note that even in the ideal
case when n is a power of 2, this still requires n2 ln2 k bit operations.

�

Solution to #3. (a) Let’s consider our algorithm to compute
∑n

j=1 j
2.

• Set sum0 = 0.

• For 1 ≤ j ≤ n

– Compute j2 (O(ln2 j) bit ops)

– Set sumj := sumj−1 + j2 (O(ln sumj−1 + ln j) bit ops)

• Result: sumn.

Note that sumj−1 = Θ(j3), the number of bit ops in the second step of the
loop is O(ln j). So each step of the loop takes O(ln2 j) bit ops. Thus the
loop takes O(

∑n
j=1 ln2 j) bit ops, but the sum here is Θ(n ln2 n) (too see

the lower bound, just sum the largest half of the terms). So the algorithm
is O(n ln2 n) bit ops.

(b) The right-hand side is just two multiplications. The first takes O(lnn ln(n+
1)) = O(ln2n) bit ops, and the second takes O(ln(n(n + 1)) ln(2n + 1)) =
O(ln2 n) bit ops, for a total of O(ln2 n) bit ops.

�

Solution to #5. (a) We will use the fact that Fn � ϕn

√
5
. The algorithm is rela-

tively simple, just set sum0 = 0 and for 1 ≤ j ≤ n, set sumj = sumj−1 +

Fj which takes O(ln sumj + lnFj) bit ops. But sumj �
∑j

i=1
ϕj

√
5

=

Θ(ϕj+1), and thus each round takes O(lnFj) = O(j) bit ops. Finally,
adding these up from 1 ≤ j ≤ n we find it takes O(n2) bit ops.

(b) This algorithm is the same, with the sum replaced by the product. Each

product takes O(ln prodj lnFj) bit ops, and we know that prodj ≈ ϕj(j+1)/2

5j/2
≈

ϕj(j+1)/2, so ln prodj ≈ j(j + 1)/2. Thus O(ln prodj lnFj) = O(j3). Sum-
ming this over 1 ≤ j ≤ n, we find O(n4) bit ops.

�

Problem 2. Exercises 6,7,9 from §4 of Chapter 2 (with proofs / arguments).

2



Solution to #6. We will show P2 reduces to P1. Suppose that we have two
equations ax + by = 0 and cx + dy = 0 for some integers a, b, c, d. Note that
these equations correspond to lines in the plane passing through the origin.
They have multiple solutions if and only if the system of equations is linearly
dependent, which in this case means the lines are the same. This occurs if and
only if the vectors 〈a, b〉 , 〈c, d〉 are scalar multiples of each other. Without loss
of generality, we may assume c = ak and d = bk for some integer k ∈ Q. Then
bc = b(ak) = a(bk) = ad. This tells us what instance of P1 we should create.
Consider the integers bc, ad, are they equal?

Note: if the answer is yes, then there are two possibilities: bc = ad 6= 0 in
which case we set k = c

a and we have our scalar multiples. If, on the other
hand bc = ad = 0, then either b or c is zero, and either a or d is zero. By
symmetry, we may assume without loss of generality that b = 0. Then, if a = 0
the first equation is easily a multiple of the second equation (namely, the second
equation times zero). If d = 0, then both equations are just multiples of the
variable x. Thus, if bc = ad, then one of the equations is a scalar multiple of the
other and so they share multiple solutions. Moreover, our previous paragraph
showed the converse. �

Solution to #7. Consider two pairs v1, v2 and w1, w2 of non-proportional vec-
tors in R3. The question is: do they span the same plane? Note that they
span the same plane if and only if the orthogonal complement of their spans
are equal. This orthogonal complement is 1-dimensional and spanned by any
(nonzero) vector orthogonal to both vectors in the pair. Since each of our pairs
are non-proportional, their cross-product vectors are nonzero and orthogonal to
each element of the pair. Thus, the orthogonal complement of span{v1, v2} =
span{v1 × v2} and similarly, for w1, w2. Thus, span{v1, v2} = span{w1, w2} if
and only if span{v1× v2} = span{w1×w2} if and only if v1× v2 is proportional
to w1 × w2, which is an instance of P1 as desired. �

Solution to #9. Consider the Integer Factorization search problem (IFS) and
the RSA problem. We wish to show RSA reduces to IFS. So, consider an
instance of RSA, namely, integers e,N with N > 1 being odd. we want an
integer d so that x 7→ xd (mod N) is the inverse of x 7→ xe (mod N) for x such
that gcd(x,N) = 1, or the statement that no such d exists. So, we are really
working in the group Z∗N of units of the ring Z/NZ. Now, the order of Z∗N is
ϕ(N) where ϕ is Euler’s totient function. Recall the that totient function is
multiplicative, so that if m,n are relatively prime, then ϕ(mn) = ϕ(m)ϕ(n).
Moreover, if p is prime, then ϕ(pk) = pk − pk−1.

We will now use IFS to factor N completely. How? Recursively apply IFS
to the factors of N until they are all prime. I claim that this requires at most
O(lnN) calls to IFS. We prove by strong induction on N . For the base case,
notice that we can factor N = 2 in one call to IFS, and 1 ≤ 3 ln 2 − 1. Now
suppose N > 2 and for all 1 < m < N we can factor m completely in 3 lnm− 1
calls to IFS. Then, apply IFS to N . If N is prime, we are done in one call, and
1 < 3 lnN − 1. Otherwise N = nk for some 1 < n, k < N . Now, it takes at

3



most 3 lnn− 1 and 3 ln k − 1 calls to factor completely n, k respectively. Thus,
it takes 1+3 lnn−1+3 ln k−1 = 3 ln(nk)−1 = 3 lnN −1 calls to IFS to factor
N . By strong induction, we can factor N with O(lnN) calls to IFS, which is a
polynomial in the size of N (i.e., length).

So, we have the prime factorization N = pn1
1 · · · p

nk

k . We can now compute

ϕ(N) =

k∏
j=1

ϕ(p
nj

j ) =

k∏
j=1

(p
nj

j − p
nj−1
j ).

The number of factors here is at most lnN , and all the partial products are
bounded by N , so computing the product takes at most ln3 N operations (this
is generally a gross overestimate). Finally, compute g = gcd(ϕ(N), e) which
we can do in lnϕ(N) ln e bit operations. By the fundamental theorem of finite
abelian groups, we are guaranteed an element of order q in Z∗n for any prime
q dividing ϕ(N). If g > 1, then there is some prime q dividing g, and some
element y ∈ Z∗n of order q. Thus ye = 1 since e is a multiple of g and so also
of q. Thus the map x 7→ xe (mod N) is not invertible. On the other hand, if
g = 1, then by the Euclidean Algorithm (which takes O(ln e lnϕ(N)), we can
find d so that de ≡ 1 (mod ϕ(N)). By an argument similar to a problem on the
first homework assignment, we can conclude that (xe)d ≡ x (mod N) using the
Chinese Remainder Theorem.

Checking the above argument, we see that we have a polynomial time al-
gorithm with a polynomial number of calls (in fact, O(lnN)) to an IFS oracle.
Thus RSA (polytime) reduces to IFS. �

Problem 3. Using the work done both on previous homeworks, prove that the
RSA encryption and decryption protocols have polynomial time algorithms (in
terms of the lengths of the keys). Try to provide a bound on the degree of
the polynomial. Note: you do not need to show at this time that there is a
polynomial time algorithm for RSA key generation.

Proof. The RSA encryption and decryption protocols are just modular expo-
nentiation. So, how many bit ops does modular exponentiation take? You
should have some algorithm for the following me (mod n) from the previous
homework.

• First reduce m (mod n) which takes lnm lnn bit ops.

• Set m0 = m, res0 = 1

• For 1 ≤ j ≤ k = blog2 ec,

– If the j-th digit of e in binary (starting from the right) is 1, set
resj := resj−1 ·mj−1 (mod n), otherwise, set resj = resj−1 (mod n)
(O(ln resj−1 lnmj−1 + (ln(resj−1mj−1) lnn)) bit ops).

– Set mj = m2
j−1 (mod n). (O(ln2 mj−1 + ln(m2

j−1) lnn) bit ops)

• Result: resk

4



Now, since we reduce mod n each time, all the values mj , resj are bounded by
n. This means every step in the loop has complexity O(ln2 n). There are O(ln e)
steps in the loop, so the total complexity is O(lnm lnn + ln e ln2 n), which is
obviously a polynomial in the lengths of m,n, e. So the RSA encryption and
decryption protocols have polynomial time algorithms. �

5


