
Algebraic Cryptography

Homework 2

Due Monday, 18 September 2017

Problem 1. Explain in detail the square and multiply algorithm for computing
modular exponentiation efficiently. Use this method to compute

29562039 (mod 5219).

Note: you can use a computer (a standard scientific calculator should suffice,
otherwise you are not using an efficient algorithm!) to do each of the multipli-
cations and modular reductions, but I should be able to see the algorithm you
described at work in the example.

Proof. To compute a modular exponentiation such as ae (mod n) via the square

and multiply method, do the following. Write e in binary as e =
∑k
j=0 cj2

j

where cj = 0, 1. Then compute the sequence a (mod n), a2 (mod n), a2
2

(mod n), . . . , a2
k

(mod n) by squaring the previous term, and then reducing modulo n. Finally,
notice that

ae (mod n) = a
∑k

j=0 cj2
j

(mod n) =

k∏
j=0

acj2
j

.

To compute the product on the right, notice that if cj = 0, this term contributes
nothing to the product, and if cj = 1, we have already computed that term.
To conclude, simply multiply the product term-by-term, reducing modulo n at
each step.

We now show this with the example provided in the question. Notice that
2039 = (11111110111)2, and so we compute:

29562 (mod 5219) = 8737936 (mod 5219) = 1330 (mod 5219)

13302 (mod 5219) = 1768900 (mod 5219) = 4878 (mod 5219)

48782 (mod 5219) = 23794884 (mod 5219) = 1463 (mod 5219)

14632 (mod 5219) = 23794884 (mod 5219) = 579 (mod 5219)

5792 (mod 5219) = 335241 (mod 5219) = 1225 (mod 5219)

12252 (mod 5219) = 1500625 (mod 5219) = 2772 (mod 5219)

1

27722 (mod 5219) = 7683984 (mod 5219) = 1616 (mod 5219)

16162 (mod 5219) = 2611546 (mod 5219) = 1956 (mod 5219)

19562 (mod 5219) = 3825936 (mod 5219) = 409 (mod 5219)

4092 (mod 5219) = 167281 (mod 5219) = 273 (mod 5219)

Then

29562039 (mod 5219) =

10∏
j=0
j 6=3

29562
j

(mod 5219)

= 2956 · 1330 ·
10∏
j=2
j 6=3

29562
j

(mod 5219)

= 1573 · 4878 ·
10∏
j=4

29562
j

(mod 5219)

= 1164 · 579 ·
10∏
j=5

29562
j

(mod 5219)

= 705 · 1225 ·
10∏
j=6

29562
j

(mod 5219)

= 2490 · 2772 ·
10∏
j=7

29562
j

(mod 5219)

= 2762 · 1616 ·
10∏
j=8

29562
j

(mod 5219)

= 1147 · 1956 ·
10∏
j=9

29562
j

(mod 5219)

= 4851 · 409 ·
10∏
j=10

29562
j

(mod 5219)

= 8 · 273 (mod 5219)

= 2184 (mod 5219)

�

Problem 2. All the exercises for §1 of Chapter 2. There are 15, but they should
each take less than 1 minute. You do not need to provide proofs.

Solution. 1.
(
n
3

)
= n(n−1)(n−2)

6 = Θ(n3).

2

2. 10 ln3 n+ 20n2 = Θ(n2).

3. The number of monomials in x, y, z of total degree at most n. Notice that
these have the form xiyjzk with i+ j+k ≤ n. Thus, it is clear that this is
O(n3) since each of i, j, k is between 0 and n. However, it is even Θ(n3).
Indeed, notice that we can choose any values of i, j, k with each between

0 and bn3 c. Of which there are approximately (i.e., asymptotically) n3

27 .

4. The number of polynomials in x of degree at most n whose coefficients are
either 0 or 1. There are exactly 2n+1 of these, so it is Θ(2n).

5. The number of polynomials in x of degree at most n−1 whose coefficients
are between 0 and n. There are exactly nn+1 of these, so it is Θ(nn)

6. The area of a fixed shape after it’s magnified by a factor of n. Assuming we
are talking about a shape in the plane, this is O(n2). However, it should
be noted that this is not Θ(n2); for example, take something whose bound-
ary has Hausdorff dimension strictly less than 2, like the Koch snowflake
(boundary has dimension log3 4).

7. The amount of memory space a computer requires to store the number n
is dlog2 ne with is Θ(lnn).

8. The amount of memory space a computer requires to store n2 is dlog2 n
2e =

d2 log2 ne with is Θ(lnn).

9. The sum of the first n positive integers is n(n+1)
2 = Θ(n2).

10. The number of bits in the sum of the squares of the first n positive integers.

Well, the sum of the squares of the first n positive integers is n(n+1)(2n+1)
6

which is Θ(n3). But we want the number of bits, which is the ceiling of
log2 of this number. In particular, the number of bits is Θ(lnn) (since
log2n

3 = 3log2n).

11. (m2 + 2m− 3)(n+ ln2 n+ 14) = O(m2n).

12. 2m ln2 n+ 3m2 lnn = O(m2 ln2 n).

13. The largest n-digit number to the base m is O(mn).

14. The maximum number of circles or radius 1
n that fit into a circle of radius

m without overlapping. The area of k circles of radius 1
n is πk

n2 . If this
exceeds the area πm2 of the big circle, some of the circles necessarily
overlap. Therefore, we have the relationship πk

n2 ≤ πm2, which yields
k ≤ m2n2. Thus this value is O(m2n2). In fact, as I argued in class, it is

asymptotically equal to πm2n2

2
√
3

.

�

Problem 3. Exercises 1,2,3 from §2 of Chapter 2. Exercise 2 does not require
proofs, but the others do.

3

Proof. (a) Suppose a k-bit integer a is divided by an l-bit integer b (where
l ≤ k) to get a quotient q and a remainder r:

a = qb+ r, 0 ≤ r < b.

Notice that the length of qb is the sum of the lengths of q and b. Moreover,
the length of r is less or equal to that of qb. Since the length of a sum is
the maximum of the length, we see that the length of a = qb + r is just
the sum of the length of bq. Thus q has k− l bits. (Of course, it is always
possible for this to be off a bit, depending on whether or not there was
carrying, but not by more than that.

(b) (a) The sum of n numbers, each of length at most k. The maximum
value this sum can have is n2k. Upon taking the logarithm, we find
this is O(k + lnn).

(b) The length of this is dominated by the n4 term, which has length
O(lnn).

(c) A polynomial in n of degree k: akn
k + ak−1n

k−1 + · · · + a0. Again,
the length is dominated by the largest term nk, which has length
O(lnn).

(d) The product of all prime numbers of k or fewer bits. Let π denote
the prime counting function. Then by the Prime Number Theorem,
π(n) � n

lnn . So, the number primes with exactly k-bits is approxi-
mately

π(2k+1)− π(2k) � 2k+1

(k + 1) ln 2
− 2k

k ln 2
.

The length of the product of all these is just k times of the number
of them. Then the length of the product of all with k or fewer bits, is
just the sum of the length of the product of all primes with exactly
j bits as j goes from 1 to k. Thus, we find

k∑
j=1

j2j+1

(j + 1) ln 2
− 2j

ln 2
� 2k+1,

so this is O(2k).

(e) We will use Stirling’s approximation to say that

(n2)! ≈
√

2πn(
n2

e
)n

2

.

Taking the logarithm of the left-hand side, we can ignore the factor
of
√

2π, and we are left with

lnn+ 2n2lnn− n2 = O(n2lnn).

4

(f) The n-th Fibonacci number Fn. By Binet’s formula,

Fn =
ϕn − (−ϕ)−n√

5
,

and hence Fn is the result of rounding ϕn

√
5
. The length of this latter

number is O(n).

(c) From the previous problem, the length of Fn is asymptotically equal to

log2
ϕn

√
5

= n log2 ϕ− 1
2 log2 5 � n log2 ϕ.

�

After having proven the Division Algorithm on the last homework, you now
know that the proof of existence of the quotient and remainder is nonconstruc-
tive, instead relying on the well-ordering of a certain set of integers. In this
homework, we will analyze an actual division method.

Problem 4. The Newton–Raphson method is a numerical method for comput-
ing the zeros of a real-valued differentiable function. The method proceeds as
follows for the function f :

• Guess a value x0 for the zero of f .

• for n ≥ 1, set xn+1 := xn − f(xn)
f ′(xn)

.

This numerical scheme does not always converge, but it often works in applica-
tions, and in fact, convergence is often quadratic.

Now consider the following. To calculate the quotient and remainder from
a division with dividend a and divisor b, it suffices to calculate only one or the
other, because the other can be easily calculated once one is known. Moreover,
the quotient is the floor of the a

b (i.e., greatest integer less or equal to a
b).

Therefore, if we can calculate a
b sufficiently accurately, then we can compute

the quotient (since it’s the integer part). Moreover, a
b = a · 1

b , so if we can
calculate 1

b with high precision, then we can do division by multiplication!
So, suppose we want to divide by b. We can approximate 1

b by applying the
Newton–Raphson method to the function f(x) := 1

x − b.

(a) Show that the iterations of the Newton–Rapshon method can be achieved
solely with the addition and multiplication of known quantities.

(b) Define the error of the n-th approximant to be en = bxn − 1. Prove that
en+1 = −e2n.

(c) Using the previous error calculation, what is the valid range (in terms of
b) for your initial guess in order to ensure convergence? Explain how to
easily choose an initial guess (expressed in binary).

(d) If your initial guess is good to one (binary) significant figure, how many
iterations do you have to compute in order to ensure your guess is good
to 500 binary significant figures (i.e., 500 bits of precision)?

5

Proof. (a) Since our function is f(x) = 1
x − b, iterations of the Newton–

Raphson method have the form:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

1
xn
− b
− 1
x2
n

= xn + (xn − x2nb) = xn(2− xnb).

(b) Notice that

en+1 = bxn+1 − 1

= bxn(2− xnb)− 1

= −b2x2n + 2bxn − 1

= −(bxn − 1)2

= −e2n.

(c) In order for the error to be decreasing (hence convergence of xn), we need
|e0| < 1. In particular, we need |bx0 − 1| < 1, or equivalently, 0 < bx0 < 2,
or equivalently, 0 < x0 <

2
b . So, how do we choose an x0 in this range?

Consider the expression for b in binary, and suppose it has l-bits. Thus

2l−1 ≤ b < 2l. Therefore, 2−l < 1
b ≤ 2−l+1. So using x0 = 2−l+2−l+1

2 =
2−l−1 + 2−l (which is trivial to express in binary) is a valid and explicit
choice for the initial guess.

(d) So, I realized I did this incorrectly in class, because the error is not just
the difference xn− 1

b , in fact, xn− 1
b = en

b . So, to get 500 bits of precision,
making sure en < 2−502 is sufficient. In particular, given our initial guess,
we can verify that − 1

22 ≤ bx0 <
1
2 and thus the error |en| < 2−2

n

. So
choosing n = 9 iterations suffices for our purposes.

�

6

