Algebraic Cryptography Homework 1

Due Wednesday, 6 September 2017

Problem 1. The Division Algorithm states that for nonnegative integers $a, b \in$ \mathbb{Z} with $b \neq 0$ (called the dividend and divisor, there exist integers $q, r \in \mathbb{Z}$ with $0 \leq r<b$ (call the quotient and remainder) for which $a=q b+r$. Prove the Division Algorithm.

Problem 2. The greatest common divisor of two nonzero integers a, b is the largest positive integer which divides both a, b. We denote this $\operatorname{gcd}(a, b)$. A linear combination of a, b over \mathbb{Z} is a quantity of the form $a x+b y$ where $a, b \in \mathbb{Z}$. Bezout's identity asserts that the greatest common divisor of a, b is the smallest positive linear combination of a, b over \mathbb{Z}. Symbolically,

$$
\operatorname{gcd}(a, b)=\min \{a x+b y \mid x, y \in \mathbb{Z}, a x+b y>0\}
$$

Prove Bezout's identity.
Problem 3. The Euclidean Algorithm is the following sequence of operations. Let $a, b \in \mathbb{Z}$ with $b>0$. Repeatedly apply the Division Algorithm to the divisor and remainder of the previous division until the remainder is zero. In other words:

$$
\begin{aligned}
a & =b q_{1}+r_{1} \\
b & =r_{1} q_{2}+r_{2} \\
r_{1} & =r_{2} q_{3}+r_{3} \\
\vdots & \\
r_{n-1} & =r_{n} q_{n+1}+0
\end{aligned}
$$

For this problem:
(a) Prove that the Euclidean Algorithm terminates.
(b) Prove that the last nonzero remainder is $\operatorname{gcd}(a, b)$.
(c) Explain how the Euclidean Algorithm allows for the computation of the integers x, y in Bezout's identity.

Problem 4. The purpose of this problem is to analyze the efficiency of the Euclidean Algorithm. This necessitates a quick study of the Fibonacci sequence. Let $F_{0}=0, F_{1}=1$, and for all $n>1$, define $F_{n}=F_{n-1}+F_{n-2}$; this is the Fibonacci sequence. In particular, the Fibonacci sequence is a linear recursion with constant coefficients. Let $\varphi=\frac{1+\sqrt{5}}{2}$ denote the golden ratio.
(a) Prove that the Fibonacci sequence is generated by the formula

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

and hence $F_{n}=\left\lceil\varphi^{n}\right\rceil$.
(b) Prove that that number of divisions required in the Euclidean Algorithm is at $\operatorname{most} \log _{\varphi} b+1$.
(c) Show that the above bound is optimal. That is, for any positive integer n, find positive integers a, b with $n>\log _{\varphi} b$ for which the Euclidean Algorithm applied to a, b requires n divisions.

Problem 5. Suppose that p, q are primes, $n=p q$ and e is a positive integer for which $\operatorname{gcd}(e, \operatorname{lcm}(p-1, q-1))=1$.
(a) Explain how to find a d for which $d e \equiv 1(\bmod \operatorname{lcm}(p-1, q-1))$.
(b) Prove that $m^{e d} \equiv m(\bmod n)$. (This is Exercise 1 in Chapter 1, hint: Fermat's Little Theorem)

Problem 6. Exercise 4(a)-(d) of Chapter 1: Kid Krypto.

