
Algebraic Cryptography

Homework 1

Due Wednesday, 6 September 2017

Problem 1. The Division Algorithm states that for nonnegative integers a, b ∈
Z with b 6= 0 (called the dividend and divisor, there exist unique integers q, r ∈ Z
with 0 ≤ r < b (called the quotient and remainder) for which a = qb+ r. Prove
the Division Algorithm.

Proof. Consider the set {k ∈ Z≥0 | a − kb ≥ 0}. This is nonempty since it
contains zero, and it is bounded since any integer larger than a is not in the set.
Therefore, this set has a maximal element, which we will call q. Set r := a− qb
which is nonnegative by the definition of q. Then notice that r−b = a−(q+1)b,
which must be negative by the maximality of q. Therefore r < b.

To prove uniqueness, suppose that there are integers q′, r′ with 0 ≤ r′ < b
so that a = q′b + r′. Then |r − r′| < b, and r− r′ = (q′ − q)b, thus |q′ − q| b < b
and hence |q′ − q| < 1. Therefore |q′ − q| = 0, so q = q′ and so also r = r′. �

Problem 2. The greatest common divisor of two nonzero integers a, b is the
largest positive integer which divides both a, b. We denote this gcd(a, b). A
linear combination of a, b over Z is a quantity of the form ax+by where a, b ∈ Z.
Bezout’s identity asserts that the greatest common divisor of a, b is the smallest
positive linear combination of a, b over Z. Symbolically,

gcd(a, b) = min{ax + by | x, y ∈ Z, ax + by > 0}.

Prove Bezout’s identity.

Proof. First, we note that any common divisor c of a, b also divides any linear
combination of a, b. Indeed, in this case a = cm and b = cn for some integers
m,n. Thus for any integers x, y, we have

ax + by = (cm)x + (cn)y = c(mx + ny),

and therefore c divides this linear combination.
Second, we let d = ax + by be the smallest positive linear combination of

a, b. We will show that d divides both a, b. By the Division algorithm, there
are integers q, r with 0 ≤ r < d so that a = qd + r = q(ax + by) + r. Therefore,
r = a(1−qx)+ b(−qy) is another linear combination of a, b and it is less than d.
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By the minimality of d, we must have r = 0, and thus d divides a. A symmetric
argument guarantees d divides b.

So, d is a common divisor of a, b. Moreover, any common divisor c of a, b
divides any linear combination of a, b; in particular, c divides d, and so c ≤ d.
Thus d = gcd(a, b). �

Problem 3. The Euclidean Algorithm is the following sequence of operations.
Let a, b ∈ Z with b > 0. Repeatedly apply the Division Algorithm to the divisor
and remainder of the previous division until the remainder is zero. In other
words:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

...

rn−1 = rnqn+1 + 0.

For this problem:

(a) Prove that the Euclidean Algorithm terminates.

(b) Prove that the last nonzero remainder is gcd(a, b).

(c) Explain how the Euclidean Algorithm allows for the computation of the
integers x, y in Bezout’s identity.

Proof.

(a) Notice that rj+1 < rj because rj+1 is the remainder of something divided
by rj . Similarly, r1 < b. So what we have is a strictly decreasing chain
of nonnegative integers b > r1 > r2 > · · · ≥ 0. Clearly, this chain must
terminate at zero after at most b steps. Thus the Euclidean Algorithm
terminates.

(b) Notice that if b divides a, then r1 = 0 and gcd(a, b) = b (here we view
b as r0, i.e., the “remainder” preceding r1). Now, suppose b does not
divide a so that r1 6= 0. Notice that the first equation guarantees that r1
is a linear combination of a, b, and the second equation guarantees that
r2 is a linear combination of b, r1, and hence also a linear combination of
a, b. We will prove by strong induction that rn is a linear combination of
a, b. To this end, let n ≥ 3 and suppose for every j < n, rj is a linear
combination of a, b. By the equation rn−2 = rn−1qn + rn, we can easily
see that rn is a linear combination of rn−1 and rn−2, which, by strong
induction, are themselves linear combinations of a, b. Therefore rn is a
linear combination of a, b.
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Finally, consider the last nonzero remainder rn. Notice that rn divides
rn−1, and therefore rn divides rn−2 = rn−1qn+rn, and so on up the chain.
By another induction argument we can conclude rn divides b and a. So, rn
is a linear combination of a, b which is also a common divisor. By Bezout’s
identity, it must be the greatest common divisor, hence rn = gcd(a, b).

(c) In the proof of the preceding item, we remarked that each remainder is
a linear combination of the previous two. Starting with rn and expand-
ing these linear combinations until we reach a, b will let us calculate the
integers x, y in Bezout’s identity.

�

Problem 4. The purpose of this problem is to analyze the efficiency of the
Euclidean Algorithm. This necessitates a quick study of the Fibonacci sequence.
Let F0 = 0, F1 = 1, and for all n > 1, define Fn = Fn−1 + Fn−2; this is the
Fibonacci sequence. In particular, the Fibonacci sequence is a linear recursion

with constant coefficients. Let ϕ = 1+
√
5

2 denote the golden ratio.

(a) Prove that the Fibonacci sequence is generated by the formula

Fn =
ϕn − (−ϕ)−n√

5
,

and hence Fn = dϕne.

(b) Prove that that number of divisions required in the Euclidean Algorithm
is at most logϕ b + 1.

(c) Show that the above bound is optimal. That is, for any positive integer
n, find positive integers a, b with n > logϕ b for which the Euclidean
Algorithm applied to a, b requires n divisions.

Proof.

(a) Linear homogeneous recurrence relations with constant coefficients always
have closed form solutions which are linear equations of exponential func-
tions where the bases are roots of the characteristic equation; why? linear
algebra. This is almost identical in nature to the solution of linear homo-
geneous differential equations with constant coefficients.

In the case of the Fibonacci sequence, the characteristic equation is r2 =

r+1, and solving for r we find r = 1±
√
5

2 . That is, r = ϕ, 1−ϕ, but 1−ϕ =
−ϕ−1 since ϕ is a solution to the characteristic equation. Therefore, we
find that the general solution to the Fibonacci sequence is of the form:

Fn = c1ϕ
n + c2(−ϕ)−n
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for some constants c1, c2. To solve for these, we notice that

0 = F0 = c1 + c2

1 = F1 = c1ϕ + c2(−ϕ−1) = c1ϕ + c2(1− ϕ).

Solving this system of equations we find c2 = −c2 and thus, 1 = c1(2ϕ−
1) = c1

√
5. Therefore, we obtain Binet’s formula

Fn =
ϕn − (−ϕ)−n√

5
,

as desired.

(b) Consider the following question: what is the smallest possible value for b
that takes n divisions (note: the value of a doesn’t matter at all)? Clearly,
the smallest possible value for b occurs when all the quotients (except the
first and the last, since those don’t matter) are 1. However, this leads to
the remainders satisfying the Fibonacci recurrence relation. Therefore, b
is a Fibonacci number. As long as we can show the required inequality
holds for Fibonacci numbers, we will be finished. For this, see the next
part of the problem.

(c) Let n ∈ N. The number of divisions required to apply the Euclidean
Algorithm to the pair Fn+2, Fn+1 is n. Indeed, the divisions all have
quotient one and remainder the previous Fibonacci number. That is,

Fn+2 = Fn+1 + Fn

Fn+1 = Fn + Fn−1

...

F2 = F1 + F0.

logϕFn+1 = logϕ

(
ϕn+1 − (−ϕ−(n+1))

)
− logϕ

√
5 ≈ n− 0.67.

�

Problem 5. Suppose that p, q are primes, n = pq and e is a positive integer
for which gcd(e, lcm(p− 1, q − 1)) = 1.

(a) Explain how to find a d for which de ≡ 1 (mod lcm(p− 1, q − 1)).

(b) Prove that med ≡ m (mod n). (This is Exercise 1 in Chapter 1, hint:
Fermat’s Little Theorem)

Proof.

(a) Note that gcd(e, lcm(p− 1, q − 1) = 1, and therefore by Bezout’s identity,
there are integers d, k for which de + k lcm(p− 1, q − 1) = 1. Thus, this d
satisfies de ≡ 1 (mod lcm(p − 1, q − 1)). By a previous problem, we can
find this using the Euclidean Algorithm.
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(b) By the Chinese Remainder Theorem, med ≡ 1 (mod n) if and only if
med ≡ 1 (mod p) and med ≡ 1 (mod q). By symmetry, it suffices to
prove it for p alone. The case m ≡ 0 (mod p) is trivial, so assume m 6≡ 0
(mod p). Then

med = m · (mp−1)k ≡ m (mod p),

where the congruence is due to Fermat’s Little Theorem.

�

Problem 6. Exercise 4(a)–(d) of Chapter 1: Kid Krypto.

Proof. As in the statement of the problem, let a, b, a′, b′ ∈ Z and define

M = ab− 1 (1)

e = a′M + a (2)

d = b′M + b (3)

n =
ed− 1

M
= a′b′M + ab′ + a′b + 1 (4)

(n, e) = public key (5)

d = private key. (6)

Encryption of a message m into a ciphertext c is given by c ≡ em (mod n).
Decryption of the ciphertext is given by m ≡ dc (mod n).

(a) We begin by verifying that decryption actually works. For this, notice
that dem = m + (de− 1)m = m + Mmn. Therefore,

dc ≡ dem (mod n) ≡ m (mod n).

(b) You make digital signatures in essentially the same way it is done with
RSA. That is, take a message m (or just a hash of it) that you want to
sign, and apply your private key to it (in this case, multiply by d (mod n).
The recipient then verifies the signature by applying your public key (in
this case, multiplying by e (mod n). This works because, just like in RSA,
the encryption and decryption operations are commutative.

(c) To break the system, note that e is a unit in Z/nZ (since it is relatively
prime to n). So, it suffices to compute the inverse d in this multiplicative
group. However, that just amounts to finding a d such that de = 1 + nk
for some k ∈ Z, but d,−k are then just the integers in Bezout’s identity,
which we already proved we can find quickly and easily using the Euclidean
Algorithm. Thus the private key is easily obtained from the public key.

(d) Suppose that an adversary can crack this cryptosystem for any choice of
a, b, a′, b′. Now let r, s be integers with gcd(r, s) = 1. Then by Bezout’s
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identity there exist integers x, y for which rx + sy = 1. Applying the
division algorithm we find integers a, a′ and b, b′ satisfying

r = a′(−y) + a

x = b′(−y) + b.

Then, with these choices of a, b, a′, b′, we find n = s, e = r. Breaking
the cryptosystem yields d, which is x, and this also allows us to find y.
Therefore we can find the integers in Bezout’s identity.

�
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