Algebraic Cryptography Exam 2 Review

For the second exam you should know the following theorems:

Theorem 1. If $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{E}$, then $[\mathbb{E} : \mathbb{F}] = [\mathbb{E} : \mathbb{K}] [\mathbb{K} : \mathbb{F}]$.

Theorem 2. A monic polynomial $f \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$.

Theorem 3 (Fundamental Theorem of Algebra). The field \mathbb{C} of complex numbers is algebraically closed.

Theorem 4. The polynomial ring R[x] is a PID if and only if R is a field.

Lemma 5. Suppose g is an element of finite order n in a group G. Then g^j has order $\frac{n}{\gcd(j,n)}$.

Theorem 6. The group \mathbb{F}_q^* is cyclic. Moreover, if g is a generator of \mathbb{F}_q^* , then g^j is also a generator if and only if gcd(j, q-1) = 1.

Lemma 7. $(a+b)^p = a^p + b^p$ in any field of characteristic p.

Theorem 8. If \mathbb{F}_q is a field of q elements, then every element is a root of the polynomial $x^q - x$ and \mathbb{F}_q is precisely the set of roots of that equation. Conversely, for every prime power $q = p^f$, the splitting field over \mathbb{F}_p of the polynomial $x^q - x$ is a field of q elements.

Theorem 9. Let \mathbb{F}_q be the field with $q = p^f$ elements and σ is Frobenius automorphism. Then the fixed field of σ is the prime field, i.e., $\mathbb{F}_q^{\sigma} = \mathbb{F}_p$. Moreover, the order of σ (in the group $\operatorname{Aut}(\mathbb{F}_q)$) is f.

Theorem 10. Suppose $\alpha \in \mathbb{F}_q$ and σ is the Frobenius automorphism. Then the conjugates of α over \mathbb{F}_p are the elements $\sigma^j(\alpha) = \alpha^{p^j}$.

Theorem 11. The subfields of \mathbb{F}_{p^f} are \mathbb{F}_{p^d} for $d \mid f$. Consequently, adjoining an element of \mathbb{F}_{p^f} to \mathbb{F}_p results in one of these fields.

Theorem 12. For $q = p^f$, the polynomial $x^q - x$ factors over \mathbb{F}_p into the product of all monic irreducible polynomials of degrees d dividing f.

You should be able to do the problems assigned as homework, as well as problems from Chapter 3 §2 and §3. You should also be able to complete the following exercises:

Exercise 1. Prove that for any ring R, the ring $M_n(R)$ is noncommutative whenever $n \geq 2$.

Exercise 2. Prove that for a natural number p, px = 0 for some $0 \neq x \in \mathbb{F}$ if and only if py = 0 for every $y \in \mathbb{F}$.

Exercise 3. Prove that any field either has characteristic zero or characteristic p, where p is prime. (it cannot have composite characteristic)

Exercise 4. Prove that if \mathbb{F} has characteristic p for some prime, then \mathbb{F} contains a copy of \mathbb{F}_p , and similarly, if \mathbb{F} has characteristic zero, then \mathbb{F} contains a copy of \mathbb{Q} .

Exercise 5. Prove that $[\mathbb{R} : \mathbb{Q}] = \infty$ (bonus: more precisely, the degree is $2^{\aleph_0} = \mathfrak{c}$) and $[\mathbb{C} : \mathbb{R}] = 2$.

Exercise 6. Suppose R is an integral domain (i.e., has no zero divisors). Note that R is a subring of R[x] (by identifying R with the constant polynomials). Prove $(R[x])^* = R^*$ under this identification.

Exercise 7. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree n > 2, then f is reducible.

Exercise 8. Prove the conditions in the definition of algebraically closed are actually equivalent.

Exercise 9. Explain why "most" elements of \mathbb{R} are transcendental over \mathbb{Q} .

Exercise 10. Suppose \mathbb{F} is a field and α is algebraic over \mathbb{F} . Prove that the set $J = \{f \in \mathbb{F}[x] \mid \alpha \text{ is a root of } f\}$ is an ideal of $\mathbb{F}[x]$. Conclude that α has a minimum polynomial; that is, a polynomial $m_{\alpha} \in \mathbb{F}[x]$ so that $m_{\alpha}(\alpha) = 0$ and whenever $f \in \mathbb{F}[x]$ with $f(\alpha) = 0$, m_{α} divides f. Note: To make the minimum polynomial unique, we also require that it is monic, i.e., the coefficient of the highest degree term is 1.

Exercise 11. Prove the equivalence in the previous definition. That is, if α is algebraic over \mathbb{F} , prove that $[\mathbb{F}(\alpha) : \mathbb{F}] = \deg m_{\alpha}$. As a corollary, conclude that $\alpha \in \mathbb{F}$ if and only if $\mathbb{F}(\alpha)$ has degree 1 over \mathbb{F} if and only if $\mathbb{F}(\alpha) = \mathbb{F}$.

Exercise 12. Prove that the splitting field of $x^3 - 2$ is $\mathbb{Q}(\omega, \sqrt[3]{2})$ and that $[\mathbb{Q}(\omega, \sqrt[3]{2}) : \mathbb{Q}] = 6.$

Exercise 13. If $f \in \mathbb{F}[x]$ is irreducible of degree d, what are the minimum and maximum possible degrees of the splitting field of f over \mathbb{F} ?

Exercise 14. If a polynomial f(x) has a root α of multiplicity $m \ge 2$ (i.e., has $(x - \alpha)^m$, then α is also a root of its derivative f'(x).

Exercise 15. Suppose \mathbb{F} is a finite field with q elements, which we will henceforth denote \mathbb{F}_q (we will prove uniqueness up to isomorphism later). Prove that $q = p^n$ for some $n \in \mathbb{N}$ and some prime p.

Exercise 16. Prove that $lcm(j,n) = \frac{nj}{gcd(j,n)}$.

Exercise 17. Let $\mathbb{F} \subseteq \mathbb{K}$ be an extension of fields and $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism which fixes \mathbb{F} . If α is a root of an irreducible polynomial $f \in \mathbb{F}[x]$, then $\tau(\alpha)$ is a conjugate of α over \mathbb{F} . That is, $\tau(\alpha)$ is also a root of f.

Exercise 18. If f is a prime number, then there are $\frac{p^f-p}{f}$ distinct monic irreducible polynomials of degree f over \mathbb{F}_p .

Exercise 19. Provide a formula for the number of distinct monic irreducible polynomials of degree f (not necessarily prime) over \mathbb{F}_p in terms of the divisors of f.