## Algebraic Cryptography <br> Exam 2 Review

For the second exam you should know the following theorems:
Theorem 1. If $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{E}$, then $[\mathbb{E}: \mathbb{F}]=[\mathbb{E}: \mathbb{K}][\mathbb{K}: \mathbb{F}]$.
Theorem 2. A monic polynomial $f \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$.

Theorem 3 (Fundamental Theorem of Algebra). The field $\mathbb{C}$ of complex numbers is algebraically closed.
Theorem 4. The polynomial ring $R[x]$ is a PID if and only if $R$ is a field.
Lemma 5. Suppose $g$ is an element of finite order $n$ in a group $G$. Then $g^{j}$ has order $\frac{n}{\operatorname{gcd}(j, n)}$.
Theorem 6. The group $\mathbb{F}_{q}^{*}$ is cyclic. Moreover, if $g$ is a generator of $\mathbb{F}_{q}^{*}$, then $g^{j}$ is also a generator if and only if $\operatorname{gcd}(j, q-1)=1$.

Lemma 7. $(a+b)^{p}=a^{p}+b^{p}$ in any field of characteristic $p$.
Theorem 8. If $\mathbb{F}_{q}$ is a field of $q$ elements, then every element is a root of the polynomial $x^{q}-x$ and $\mathbb{F}_{q}$ is precisely the set of roots of that equation. Conversely, for every prime power $q=p^{f}$, the splitting field over $\mathbb{F}_{p}$ of the polynomial $x^{q}-x$ is a field of $q$ elements.

Theorem 9. Let $\mathbb{F}_{q}$ be the field with $q=p^{f}$ elements and $\sigma$ is Frobenius automorphism. Then the fixed field of $\sigma$ is the prime field, i.e., $\mathbb{F}_{q}^{\sigma}=\mathbb{F}_{p}$. Moreover, the order of $\sigma\left(\right.$ in the group $\left.\operatorname{Aut}\left(\mathbb{F}_{q}\right)\right)$ is $f$.

Theorem 10. Suppose $\alpha \in \mathbb{F}_{q}$ and $\sigma$ is the Frobenius automorphism. Then the conjugates of $\alpha$ over $\mathbb{F}_{p}$ are the elements $\sigma^{j}(\alpha)=\alpha^{p^{j}}$.

Theorem 11. The subfields of $\mathbb{F}_{p^{f}}$ are $\mathbb{F}_{p^{d}}$ for $d \mid f$. Consequently, adjoining an element of $\mathbb{F}_{p^{f}}$ to $\mathbb{F}_{p}$ results in one of these fields.

Theorem 12. For $q=p^{f}$, the polynomial $x^{q}-x$ factors over $\mathbb{F}_{p}$ into the product of all monic irreducible polynomials of degrees $d$ dividing $f$.

You should be able to do the problems assigned as homework, as well as problems from Chapter $3 \S 2$ and $\S 3$. You should also be able to complete the following exercises:

Exercise 1. Prove that for any ring $R$, the ring $M_{n}(R)$ is noncommutative whenever $n \geq 2$.

Exercise 2. Prove that for a natural number p, $p x=0$ for some $0 \neq x \in \mathbb{F}$ if and only if $p y=0$ for every $y \in \mathbb{F}$.

Exercise 3. Prove that any field either has characteristic zero or characteristic p, where $p$ is prime. (it cannot have composite characteristic)
Exercise 4. Prove that if $\mathbb{F}$ has characteristic $p$ for some prime, then $\mathbb{F}$ contains a copy of $\mathbb{F}_{p}$, and similarly, if $\mathbb{F}$ has characteristic zero, then $\mathbb{F}$ contains a copy of $\mathbb{Q}$.

Exercise 5. Prove that $[\mathbb{R}: \mathbb{Q}]=\infty$ (bonus: more precisely, the degree is $2^{\aleph_{0}}=\mathfrak{c}$ ) and $[\mathbb{C}: \mathbb{R}]=2$.

Exercise 6. Suppose $R$ is an integral domain (i.e., has no zero divisors). Note that $R$ is a subring of $R[x]$ (by identifying $R$ with the constant polynomials). Prove $(R[x])^{*}=R^{*}$ under this identification.

Exercise 7. Prove that if a polynomial $f \in \mathbb{R}[x]$ has odd degree $n>2$, then $f$ is reducible.

Exercise 8. Prove the conditions in the definition of algebraically closed are actually equivalent.

Exercise 9. Explain why "most" elements of $\mathbb{R}$ are transcendental over $\mathbb{Q}$.
Exercise 10. Suppose $\mathbb{F}$ is a field and $\alpha$ is algebraic over $\mathbb{F}$. Prove that the set $J=\{f \in \mathbb{F}[x] \mid \alpha$ is a root of $f\}$ is an ideal of $\mathbb{F}[x]$. Conclude that $\alpha$ has a minimum polynomial; that is, a polynomial $m_{\alpha} \in \mathbb{F}[x]$ so that $m_{\alpha}(\alpha)=0$ and whenever $f \in \mathbb{F}[x]$ with $f(\alpha)=0$, $m_{\alpha}$ divides $f$. Note: To make the minimum polynomial unique, we also require that it is monic, i.e., the coefficient of the highest degree term is 1 .

Exercise 11. Prove the equivalence in the previous definition. That is, if $\alpha$ is algebraic over $\mathbb{F}$, prove that $[\mathbb{F}(\alpha): \mathbb{F}]=\operatorname{deg} m_{\alpha}$. As a corollary, conclude that $\alpha \in \mathbb{F}$ if and only if $\mathbb{F}(\alpha)$ has degree 1 over $\mathbb{F}$ if and only if $\mathbb{F}(\alpha)=\mathbb{F}$.

Exercise 12. Prove that the splitting field of $x^{3}-2$ is $\mathbb{Q}(\omega, \sqrt[3]{2})$ and that $[\mathbb{Q}(\omega, \sqrt[3]{2}): \mathbb{Q}]=6$.

Exercise 13. If $f \in \mathbb{F}[x]$ is irreducible of degree $d$, what are the minimum and maximum possible degrees of the splitting field of $f$ over $\mathbb{F}$ ?

Exercise 14. If a polynomial $f(x)$ has a root $\alpha$ of multiplicity $m \geq 2$ (ie., has $(x-\alpha)^{m}$, then $\alpha$ is also a root of its derivative $f^{\prime}(x)$.

Exercise 15. Suppose $\mathbb{F}$ is a finite field with $q$ elements, which we will henceforth denote $\mathbb{F}_{q}$ (we will prove uniqueness up to isomorphism later). Prove that $q=p^{n}$ for some $n \in \mathbb{N}$ and some prime $p$.

Exercise 16. Prove that $\operatorname{lcm}(j, n)=\frac{n j}{\operatorname{gcd}(j, n)}$.
Exercise 17. Let $\mathbb{F} \subseteq \mathbb{K}$ be an extension of fields and $\tau \in \operatorname{Aut}(\mathbb{K})$ an automorphism which fixes $\mathbb{F}$. If $\alpha$ is a root of an irreducible polynomial $f \in \mathbb{F}[x]$, then $\tau(\alpha)$ is a conjugate of $\alpha$ over $\mathbb{F}$. That is, $\tau(\alpha)$ is also a root of $f$.

Exercise 18. If $f$ is a prime number, then there are $\frac{p^{f}-p}{f}$ distinct monic irreducible polynomials of degree $f$ over $\mathbb{F}_{p}$.

Exercise 19. Provide a formula for the number of distinct monic irreducible polynomials of degree $f$ (not necessarily prime) over $\mathbb{F}_{p}$ in terms of the divisors of $f$.

