
Algebraic Cryptography

Exam 1

Choose 5 of the following 7 problems to complete.

Problem 1. Recall that in the RSA cryptosystem a user generates primes p, q
and computes the product n. The user then generates an encryption exponent
e relatively prime to (p− 1) and (q − 1). Then the user computes a decryption
exponent d so that de ≡ 1 (mod (p − 1)(q − 1)). The user then publishes the
public key (n, e) and keeps the private key d a secret.

(a) Prove that the map x 7→ xd (mod n) is the inverse of x 7→ xe (mod n).

(b) Suppose Alice and Bob generate public keys (n, e) and (n′, e′) which share
a prime p (i.e., n = pq and n′ = pq′), perhaps due to insufficient en-
tropy (randomness) during key generation. Explain how an attacker, with
knowledge only of the public keys can crack both Alice’s and Bob’s private
keys.

Problem 2. Consider a commutative public key encryption decryption scheme
(i.e., the encryption functions e and d commute, e ◦ d = d ◦ e). Let eA, dA
be Alice’s encryption/decryption functions, and let eB , dB be Bob’s. Let h
denote a hash function and m a message. The functions eA, eB , h are all public
knowledge.

(a) Explain how Alice can use these functions to sign a message m in such a
way that everyone (not just Bob) can read the message and everyone can
verify that Alice wrote it.

(b) Explain how Alice can send a secret message to Bob that only he can read,
but that Bob (and only Bob) can know and be sure that Alice wrote it.

Problem 3. Show that at least n
2 of the numbers 1, 2, . . . , n have (binary)

length equal to or greater than log2 n−1. Then show that n! has length at least
equal to n

2 (log2 n−2), and that for large n, this is greater than Cn lnn for some
positive constant C.

Problem 4. Given a k-bit integer, you want to compute the highest power
of this number that has l or fewer bits (we suppose l � k). Estimate (with
big-O) the number of bit operations required to do this. Your answer should be
a very simple expression in terms of k and/or l. Moreover, you should explicitly
describe the algorithm you are using.

1



Problem 5. Suppose that you have a list of all primes having k or fewer bits.
Using the Prime Number Theorem and big-O notation, estimate the number
of bit operations needed to compute the sum of all these primes. You should
explicitly describe the algorithm you are using. (recall: the number of bit
operations required to add a k-bit number and an l-bit number is max{k, l}.)

Problem 6. Let P1 be the decision problem

Input: A polynomial p(x) with integer coefficients.

Question: Is there any interval of R on which p(x) decreases?

Let P2 be the decision problem

Input: A polynomial p(x) with integer coefficients.

Question: Is there any interval of R on which p(x) is negative?

Show that P1 and P2 are equivalent (P1 reduces to P2 and P2 reduces to P1).

Problem 7. The Integer Factorization Search (IFS) Problem is the search
problem

Input: An integer N > 1

Output: The statement “N is prime” or a nontrivial factor n of N .

The Integer Factorization Decision (IFD) Problem is the decision problem

Input: An integer N > 1 and an integer k

Question: Does N have a factor in the interval [2, k]?

Show that IFS reduces to IFD in polynomial time. That is, show there is
a polynomial time algorithm (where the input size is the length of N) for IFS
which makes at most polynomially many calls to an IFD-oracle.

Small bonus: Explain why IFD is in NP.

2


