
Algebraic Cryptography

Exam 1 Solutions

Choose 5 of the following 7 problems to complete.

Problem 1. Recall that in the RSA cryptosystem a user generates primes p, q and computes the product
n. The user then generates an encryption exponent e relatively prime to (p− 1) and (q − 1). Then the user
computes a decryption exponent d so that de ≡ 1 (mod (p− 1)(q − 1)). The user then publishes the public
key (n, e) and keeps the private key d a secret.

(a) Prove that the map x 7→ xd (mod n) is the inverse of x 7→ xe (mod n).

(b) Suppose Alice and Bob generate public keys (n, e) and (n′, e′) which share a prime p (i.e., n = pq and
n′ = pq′), perhaps due to insufficient entropy (randomness) during key generation. Explain how an
attacker, with knowledge only of the public keys can crack both Alice’s and Bob’s private keys.

Proof. (a) Since med = (me)d, we are ultimately trying to prove that med ≡ m (mod n) for all m. We
first prove that med ≡ m (mod p) (and similarly for q). If m ≡ 0 (mod p), then the result is trivial.
Otherwise, notice that de = 1 + k(p− 1)(q − 1) for some integer k. Then

med = m1+k(p−1)(q−1) = m · (m(p−1))k(q−1) ≡ m · 1k(q−1) (mod p) ≡ m (mod p),

where the first congruence is due to Fermat’s Little Theorem. A symmetric argument proves med ≡ m
(mod q).

The previous paragraph provesmed ≡ m (mod p) andmed ≡ m (mod q). Since p, q are distinct primes,
they are relatively prime, so we may apply the Chinese Remainder Theorem to conclude med ≡ m
(mod pq) = m (mod n).

(b) Suppose Alice and Bob have public keys (n, e) and (n′, e′) which share a prime p (i.e., n = pq and
n′ = pq′). Since n, n′ are public, an attacker can compute gcd(n, n′), yielding p, using the Euclidean

Algorithm which is polynomial time (even of low degree). Then the attacker computes n
p and n′

p ,yielding

q, q′, and integer division is also polynomial time. Finally, the attacker solves for d, d′ satisfying de ≡ 1
(mod (p−1)(q−1)) and d′e′ ≡ 1 (mod (p−1)(q′−1)), again using the Euclidean Algorithm. Therefore
the attacker has cracked the private keys, d, d′ of Alice and Bob using only public information.

�

Problem 2. Consider a commutative public key encryption decryption scheme (i.e., the encryption functions
e and d commute, e ◦ d = d ◦ e). Let eA, dA be Alice’s encryption/decryption functions, and let eB , dB be
Bob’s. Let h denote a hash function and m a message. The functions eA, eB , h are all public knowledge.

(a) Explain how Alice can use these functions to sign a message m in such a way that everyone (not just
Bob) can read the message and everyone can verify that Alice wrote it.

(b) Explain how Alice can send a secret message to Bob that only he can read, but that Bob (and only
Bob) can know and be sure that Alice wrote it.

1



Proof. (a) Alice first hashes her message m creating h(m). She then publishes her message m and appends
her signature dA(h(m)) using her private key function dA. Obviously, anyone can read the message
m, but they can also take her signature and apply her public key eA to get eA(dA(h(m))) = h(m).
Finally, the recipient computes the hash h(m) using the message they received, and verifies that these
values match. Since only Alice knows dA, the signature must have been created by Alice. Moreover,
the message cannot have been tampered with (otherwise the computed hash wouldn’t match the one
Alice sent in her signature).

(b) Alice sends Bob an encrypted message using his public key eB(m). Obviously, anyone could send
this, so Alice sends along the signature eB(dA(h(m))). Only Bob can apply his private key to get
dB(eB(m)) = m and dB(eB(dA(h(m)))) = dA(h(m)) thus putting him in the situation of part (a).

�

Problem 3. Show that at least n
2 of the numbers 1, 2, . . . , n have (binary) length equal to or greater than

log2 n− 1. Then show that n! has length at least equal to n
2 (log2 n− 2), and that for large n, this is greater

than Cn lnn for some positive constant C.

Proof. Note that at least half of n is dn2 e. The numbers bn2 c+ 1, . . . , n are exactly dn2 e integers. Moreover,
all of these are greater than or equal to n

2 . Thus, all of these have length at least⌊
log2

n

2

⌋
+ 1 = blog2 n− 1c+ 1 ≥ log2 n− 2 + 1 = log2 n− 1

Recall that when multiplying numbers of length k, l, the product has length either, k + l − 1 or k + l,
so at least k + l − 1. Now, we have bn2 c multiplications to compute when computing the product: n(n −
1) · · · (bn2 c + 1). Since each number in this product has length at least log2 n − 1, the entire product has
length at least

sum of lengths︷ ︸︸ ︷⌈n
2

⌉
(log2 n− 1)−

# mults︷︸︸︷⌊n
2

⌋
≥ n

2
(log2 n− 1)− n

2
=
n

2
(log2 n− 2).

Finally, since log2 n = lnn
ln 2 , we consider the limit

lim
n→∞

n
2 (log2 n− 2)

n lnn
= lim

n→∞

(
n lnn

(2 ln 2)n lnn
− n

n lnn

)
= lim

n→∞

(
1

2 ln 2
− 1

lnn

)
=

1

2 ln 2
.

Therefore, for every ε > 0, there is an N such that for all n ≥ N ,

n

2
(log2 n− 2) ≥

(
1

2 ln 2
− ε
)
n lnn.

In particular, if we set ε = 1
4 ln 2 , then N = 16, and so we may choose C = 1

4 ln 2 . This proves that the length
of n! is Ω(n lnn). �

Problem 4. Given a k-bit integer, you want to compute the highest power of this number that has l or
fewer bits (we suppose l� k). Estimate (with big-O) the number of bit operations required to do this. Your
answer should be a very simple expression in terms of k and/or l. Moreover, you should explicitly describe
the algorithm you are using.

Proof. Let n denote our k-bit integer. Note that the length of nm is at least km− (m− 1) and at most km.
Therefore m is the largest exponent so that nm has l bits, then m is at least l

k and at most l−1
k−1 . By a result

from the homework (which you should reproduce for this solution), the number of bit operations to compute
nm is O(m2 ln2 n), since ln2 n is proportional to k2, the number of bit operations to compute nm is

O

((
l − 1

k − 1

)2

k2

)
= O(l2)

2



since we are only concerned with large k, l (of course, still l� k).

By the way, in case you are wondering how to find m exactly, do it like this: Compute n, n2, n2
2

, n2
3

, . . .
until the value exceeds l bits. Then take the largest one of these that didn’t exceed l bits, and multiply it
by the next biggest. If it still doesn’t exceed l bits, take the resulting product and repeat with the next
largest term. If this product does exceed l bits, go back to the one that didn’t and repeat with the next
largest term. Eventually, you get a product of powers of n2

s

, and the sum of the 2s terms that ended up in
your product is m. (Note, I think this method might actually give you complexity O(l2 ln l

k ) because we are
multiplying the biggest terms first, instead of the smallest ones). �

Problem 5. Suppose that you have a list of all primes having k or fewer bits. Using the Prime Number
Theorem and big-O notation, estimate the number of bit operations needed to compute the sum of all these
primes. You should explicitly describe the algorithm you are using. (recall: the number of bit operations
required to add a k-bit number and an l-bit number is max{k, l}.)

Proof. The primes that have k or fewer bits are those primes less than 2k. By the Prime Number Theorem

there are approximately π(2k) � 2k

k ln 2 such primes. We will assume all of these primes have length k (this
will be an overestimate, but not a significant one). To sum a large list of numbers all, we will employ the
following strategy. Pair the numbers off and compute the sum of each pair, thus producing a new list of
numbers (if the numbers of numbers is odd, just leave one alone). Repeat the previous step until we have
the full sum. The number of steps in this algorithm is at most dlog2me where m is the number of integers
we are adding. Moreover, if the numbers on one step all have length at most l, then the numbers on the next
step all have length at most l + 1. So, let’s assume we are going to sum m numbers all of length k. Then
the sum of any pair on step j takes at most O(k + j − 1) bit operations, and there are about m2−j such
pairs. Thus, step j takes at most O((k + j − 1)m2−j) bit operations. Summing this from 1 ≤ j ≤ dlog2me
gives the total time complexity. In our case, m � 2k

k ln 2 , and hence dlog2me � k. Therefore, summing all the
primes of length less than or equal to k has time complexity at most

k∑
j=1

2k−j

k ln 2
(j + k − 1) ≤ 1

ln 2

k∑
j=1

2k−j+1 ≤ 2k+1

ln 2
= O(2k). �

Problem 6. Let P1 be the decision problem

Input: A polynomial p(x) with integer coefficients.

Question: Is there any interval of R on which p(x) decreases?

Let P2 be the decision problem

Input: A polynomial p(x) with integer coefficients.

Question: Is there any interval of R on which p(x) is negative?

Show that P1 and P2 are equivalent (P1 reduces to P2 and P2 reduces to P1).

Proof. Let p(x) be a polynomial with integer coefficients. Notice that p′(x) is also a polynomial with integer
coefficients (because the coefficients are just the old integer coefficients multiplied by the integer powers).
Moreover, p′(x) < 0 on some interval if and only if p(x) is decreasing on that same interval. Therefore, given
an instance of P1, we have constructed an instance of P2 which yields the same result. Thus we have reduce
P1 to P2.

For the other direction, consider p(x) and
∫
p(x) dx. Even though the former has integer coefficients, the

latter may not (because the coefficients get divided by the powers when we integrate). Thus, if n denotes
the degree of p(x), we instead consider the polynomial n!

∫
p(x) dx which does have integer coefficients

(technically, we could replace n! with the least common multiple of 1, . . . , n, but that isn’t really easier).
Moreover, n!

∫
p(x) dx is decreasing if and only if

∫
p(x) dx is decreasing if and only if p(x) < 0. Therefore,

given an instance of P2, we have constructed an instance of P1 which yields the same result. Thus P2 reduces
to P1.

3



Note: if we consider the degree of p(x) as the input size we have not shown that P2 reduces to P1 in
polynomial time because our algorithm requires the computation of n!, for which we do not have a polynomial
time algorithm. �

Problem 7. The Integer Factorization Search (IFS) Problem is the search problem

Input: An integer N > 1

Output: The statement “N is prime” or a nontrivial factor n of N .

The Integer Factorization Decision (IFD) Problem is the decision problem

Input: An integer N > 1 and an integer k

Question: Does N have a factor in the interval [2, k]?

Show that IFS reduces to IFD in polynomial time. That is, show there is a polynomial time algorithm
(where the input size is the length of N) for IFS which makes at most polynomially many calls to an
IFD-oracle.

Small bonus: Explain why IFD is in NP.

Proof. The solution is to apply binary search. The idea is to find the smallest factor of N (this factor will
necessarily be prime, but that is not important). We first consider the interval [a, b] where a = 2, b = N − 1
and query IFD with N and k = N − 1. If “no” then N is prime. If “yes” then N has a factor in the interval
[a, b]. Now, while a < b, repeat the following loop:

• Query IFD with N and k =
⌈
a+b
2

⌉
.

• If “yes”, set b =
⌈
a+b
2

⌉
.

• If “no”, set a =
⌈
a+b
2

⌉
.

At this point, a = b. Set n := a = b.
Notice that the size of the interval [a, b] is cut in (about) half at each step, so that this loops at most

O(log2N) times, thus this algorithm makes only polynomially many calls to IFD. Also, every other compu-
tation in this algorithm (i.e., ceiling, sum, divide by 2) is polynomial time. Therefore, this entire algorithm
(assuming it works) is a polynomial time reduction of IFS to IFD.

To prove it actually works, note that at the end of each loop, there is always a factor of N less than or
equal to b. Notice that if at any point a+ 2 ≤ b, then

a < a+ 1 =

⌈
a+ (a+ 2)

2

⌉
≤
⌈
a+ b

2

⌉
≤
⌈

(b− 2) + b

2

⌉
= b− 1 < b.

Thus, the only way to get a = b at the end of a loop is if at the beginning of that loop, a+ 1 = b. Moreover,
in this case, the only way to get a = b is if the answer is “no”. Therefore, N has a factor less than or equal
to n (because n = b), but does not have a factor less than or equal to n− 1 (because a = n− 1 the last time
through the loop and the answer was “no”). Thus n is a factor of N .

Bonus: In order for IFD to be in NP, we have to show that if IFD answers “yes”, then it can provide
some sort of certificate, which is a proof of the “yes” answer that can be checked in polynomial time. So, if
IFD answers “yes” for N > 1 and k, it can provide a factor 2 ≤ n ≤ k of N as a certificate. This certificate
can be used to prove that N has a factor less than or equal to k in polynomial time by just dividing N by
n and showing that the remainder is zero. Since integer division is polynomial time, IFD is in NP. �

4


