

MRI (# 1625499): Design of Configuration and Readout Electronics for a Multi-Channel Integrated Circuit used in the Detection and Monitoring of Ionization Radiation

Advisor : Dr. George L Engel

By
Sai Geetha Allipuram
Department of Electrical and Computer Engineering

Outline

- Introduction
- System Level Design
- Digital Design using EDI Tools
- Standard Cell Design Flow
- Common Channel
- Signal Channel
- Summary
- Future Work

Introduction

Research Background:

- Alliance of IC Design Research Laboratory at SIUE with the Nuclear Reactions Group at Washington University St. Louis
- Development of a class of multi-channel custom integrated circuits
 (ICs)
- Need for these custom IC's ?
- The Collaboration Achievements:
 - **HINP** Heavy Ion Nuclear Physics with 16 Channels
 - **PSD** Pulse Shape Discrimination with 8 Channels
 - Later many revised versions of PSD8C and HINP16C are developed

- HiRA High Resolution Array Detector
 - An Array of Silicon Strip Detectors
 - 2 Silicon detectors of 65 μm & 1.5 mm

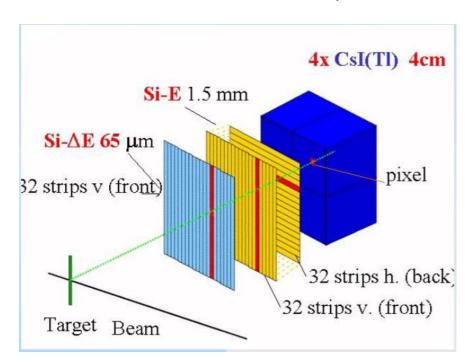


Fig.2 A look at Silicon Strip Detectors in HiRA © Stephanie_Simpson

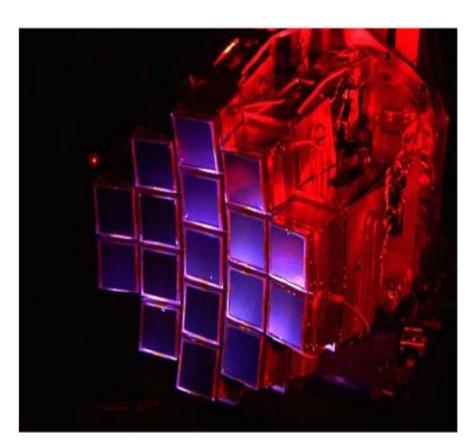


Fig.1 HiRA – High Resolution Array Detector

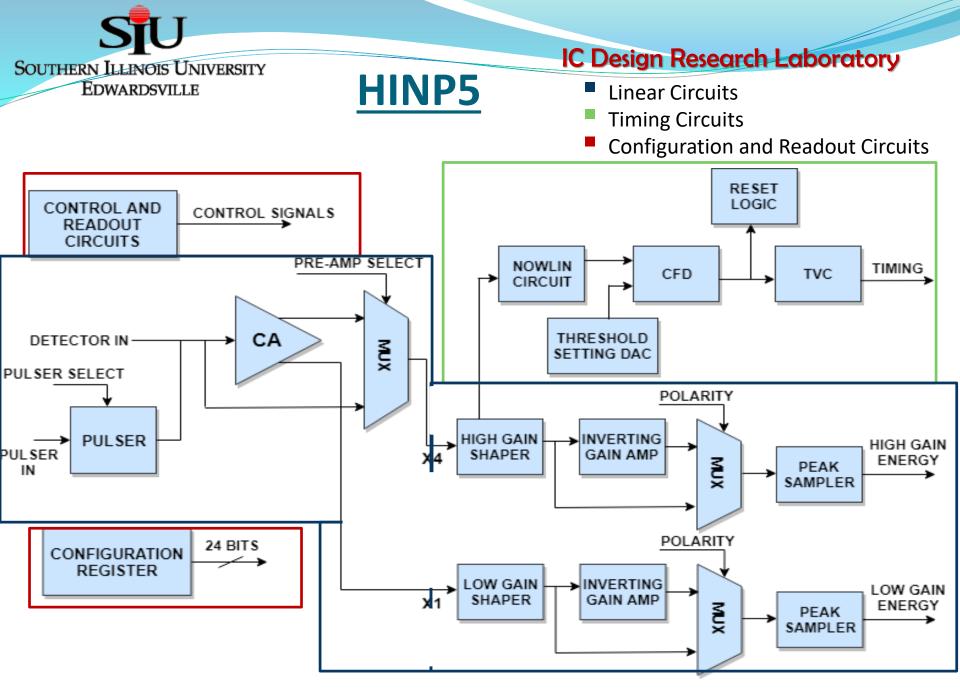



Fig.3 Block Diagram of a typical HINP5 channel © Korkmaz Anil

High Level System Design

- HINP5 chip generates analog pulse trains for both timing and energy of incident radiation.
- Need for digitization ?
- The Chipboards has
 - A simple Xilinx FPGA
 - 2 HINP5 chips
 - 3 ADC's for each HINP5 chip

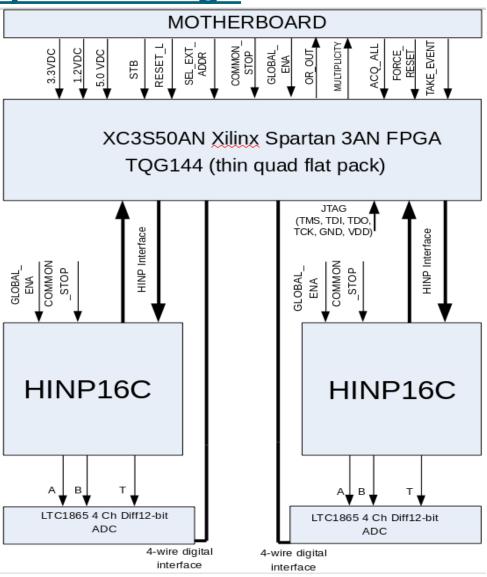


Fig.4 Block Diagram of the System

Digital Design using EDI Tools

- A Verilog driven digital design
- Cadence's EDI(Encounter Digital Implementation) computer aided design tools.
- Standard cell design approach
- Why Standard Cell Design ?
 - Building blocks: Logic cells from the digital standard cell library.
 - Less amount of design effort.
 - Speeds-up the design phase of the digital circuits[Eriksson et al., 2019].

Standard Cell Design Approach

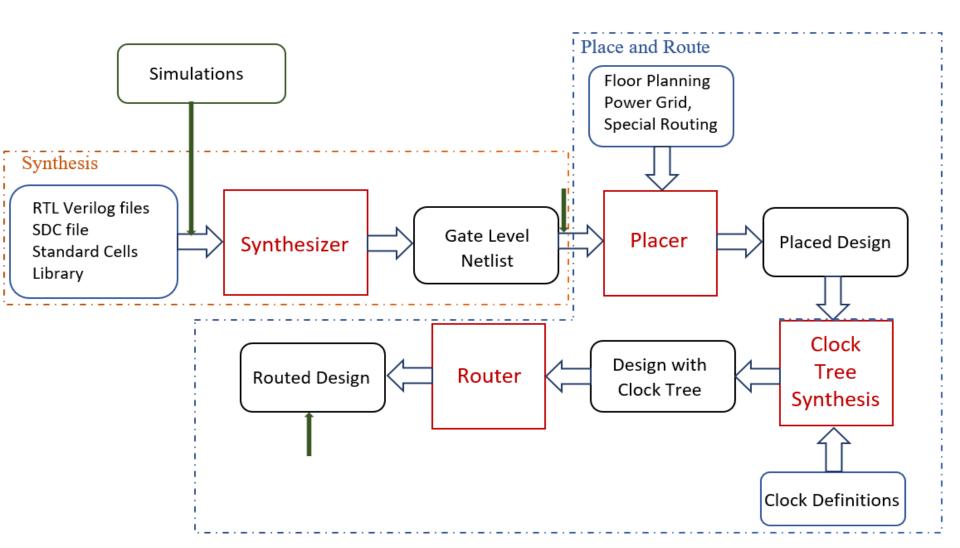
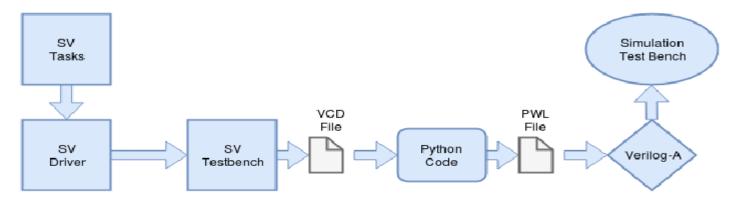
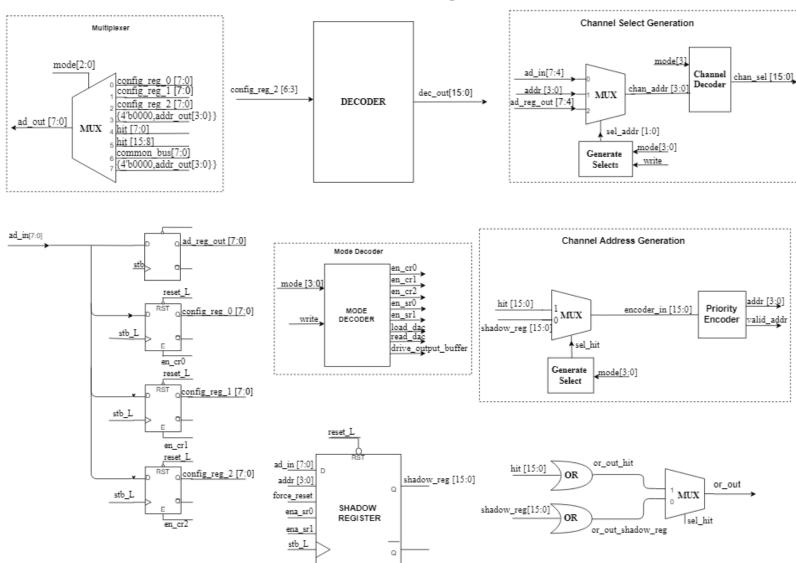


Fig.7 Standard Cell Design Flow

Fig.8 Exporting the design from cadence EDI tools to Cadence IC station




Fig.9 Electrical Simulation testing procedure © Bryan Orabutt

stb L

Common channel

HINP Digital

input ad_in [7:0]
input write
input stb
input hit [15:0]
input reset_L
input force_reset
input common_bus[7:0]

output ad_out [7:0]
output chan_sel [15:0]
output stb_L
output load_dac
output read_dac
output or_out
output drive_output_buffer
output config_reg_0 [7:0]
output config_reg_1 [7:0]
output config_reg_2 [7:0]
output dec_out [15:0]

Configuration and Readout Electronics

- Provides proper control signals
 - for all the sixteen signal channels and does readout.
 - 24 Configuration bits
 - Readout electronics

Configuration Register	BIT Position	Name	Function
config_reg_0	0	USE_EVEN_PULSER	0: Default 1: Pulsing EVEN channels
config_reg_0	1	USE_ODD_PULSER	0: Default 1: Pulsing ODD channels
config_reg_0	2	NOWLIN_CAP0	Selects one of the 16
config_reg_0	3	NOWLIN_CAP1	capacitors to
config_reg_0	4	NOWLIN_CAP2	Set the NOWLIN delay (
config_reg_0	5	NOWLIN_CAP3	0.5pF to 8 pF)
config reg 0	6	NOWLIN MODE	0: Long Mode (Rise time constant: 12ns – 192ns) 1: Short Mode (Rise time constant: 1ns - 16ns)
coming_reg_0	U	INO WEIIN_IVIODE	•
config_reg_0	7	BUFFER_BIAS_HG	0: Bias is 50mv 1: Bias is 25mv

Table.1 Bit assignments of configuration register **cr_reg_0**

	KDSVILLE			Configuratio			
Configuration Register	BIT Position	Name	Function	n Register	BIT Position	Name	Function
Register	Position	Name	runction	Register	POSITION	Name	runction
config_reg_1	0	BUFFER_BIAS_HG_PO	0: Positive Polarity1: NegativePolarity	config_reg_2	0	TVC_2_USEC_ MODE	1: TVC 2 usec full range 0: TVC 250 nsec range
config_reg_1	1	BUFFER_BIAS_LG	0: Bias is 50mv 1: Bias is 25mv	config_reg_2	1	EXT_CHARGE_ AMP	0: Use internal charge amp 1: Use external charge amp
config_reg_1	2	BUFFER_BIAS_LG_PO L	0: Positive Polarity 1: Negative Polarity	config_reg_2	2	HOLES	0: Electrons Collection 1: Holes Collection
config_reg_1	3	BUFFER_BIAS_TVC	0: Bias is 50mv 1: Bias is 25mv	config_reg_2	3	DLY_VC0	4-bit value that determines
config_reg_1	4	BUFFER_BIAS_TVC_P OL	0: Positive Polarity 1: Negative Polarity	config_reg_2	4	DLY_VC1	the 16 delay times by the auto reset block before the channels auto
config_reg_1	5	AGND_TR0		config_reg_2	5	DLY_VC2	reset.
config_reg_1	6	AGND_TR1	Allows to adjust AGND voltage (1.4	config_reg_2	6	DLY_VC3	
			to 1.8v in 50mV step)				1 bit that determines the width of the digital reset to be either 100nsec or 1usec
config_reg_1	7	AGND_TR2		config_reg_2	/	DLY_VC4	

Table.2 Bit assignments of configuration registers cr_reg_1 & cr_reg_2

Modes of Operation

write	mode[2:0]	Operation
0	"000"	ad_out < config_reg_0[7:0]
0	"001"	ad_out < config_reg_1[7:0]
0	"010"	ad_out < config_reg_2[7:0]
0	"011"	ad_out < {addr_out[3:0], 4'b000}
0	"100"	ad_out < hit_reg_lower[7:0]
0	"101" "110"	ad_out < hit_reg_upper[7:0] ad_out < 8'd0
0	"111"	ad_out < {addr_out[3:0] , 4'b0000}
1	"000"	config_reg_0 < ad_in[7:0]
1	"001"	config_reg_1 < ad_in[7:0]
1	"010"	config_reg_2 < ad_in[7:0]
1	"011"	addr_in < ad_in[7:4]
1	"100"	shadow_reg_lower < ad_in[7:0]
1	"101"	shadow_reg_upper < ad_in[7:0]
1 1	"110" "111"	dac_reg(addr) < ad_in[7:0]
1	TTT	addr_in < ad_in[7:4]

Table 3. Modes of Operation

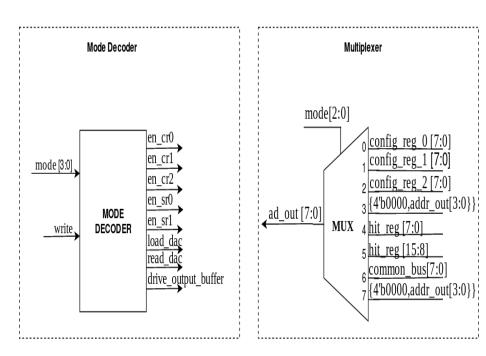


Fig.11 Mode Decoding Circuit in common channel

ad_reg [7:0] <--- {addr, mode}

addr: Upper nibble of ad_reg

mode: Lower nibble of ad_reg

Channel Address Generation

Verilog logic of channel address generation

```
/**** Digital Logic for Channel Address Generation ****/
// MUX Logic for choosing either hit register or shadow register
reg [15:0] encoder in;
always @(*) begin
         case (sel hit)
                 0: encoder in = shadow reg;
                 1: encoder in = hit;
         endcase
.// Generate sel hit bit for choosing either hit register or shadow register
assign sel hit = (mode[2:0] == 3'd3 & ~write)? 1'b0 : 1'b1;
// Priority Encoder Block
integer j;
always @(*) begin
     if (|encoder in) begin
         for (j=15; j>=0 ; j=j-1) begin
                 if (encoder in[j]) begin
                         addr = i:
                         valid addr = 1'b1;
                 end
         end
     end
     else begin
         addr = 4'd0:
         valid addr = 1'b0;
end
```

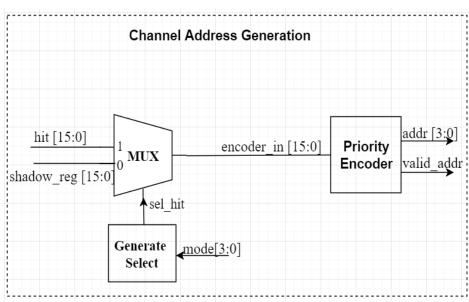
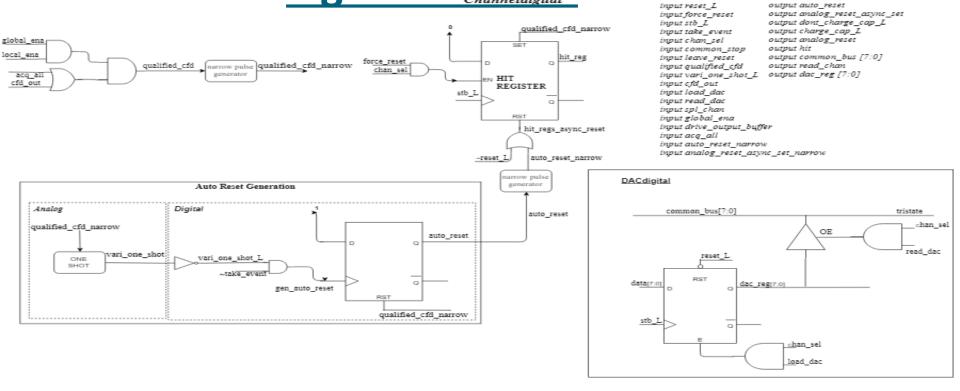
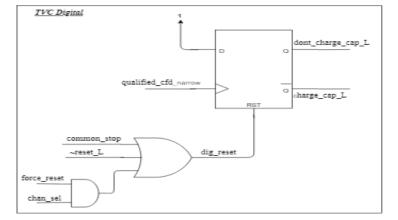
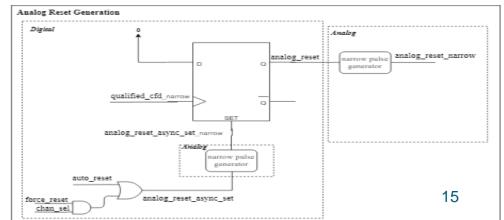


Fig.12 Channel Address Generation Circuit

Example:


If odd channels are hit;


$hit[15:0] \rightarrow encoder_in[15:0]$	addr[3:0]	valid_addr		
1010_1010_1010_1010	0001	1		
readout;				


$hit[15:0] \rightarrow encoder_in[15:0]$	addr[3:0]	valid_addr
1010_1010_1010_1000	0011	1

Signal Channel

Layout of HINPdigital

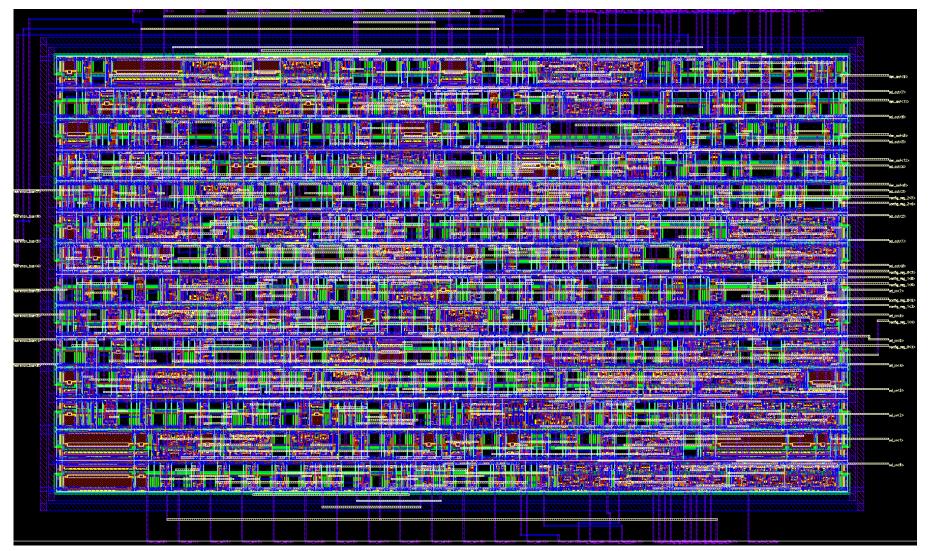


Fig.15 Layout of HINP common channel digital logic generated by place & route tool

Layout of Channeldigital

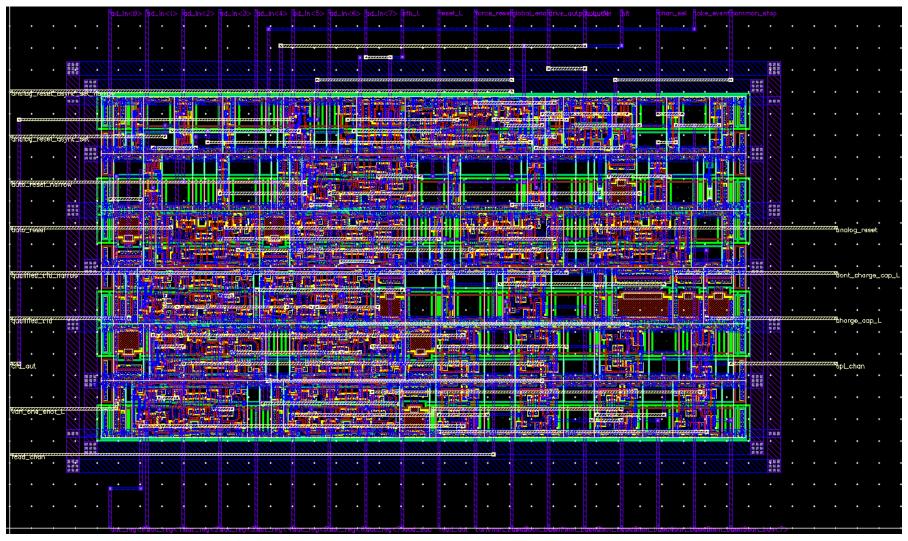


Fig.16 Layout of HINP signal channel digital logic generated by place & route tool

Summary

- Layout Dimensions:
 - HINP Digital: 427 μm X 223 μm
 - Channel Digital: 191 μm X 119 μm
- A Verilog driven design carried out using cadence EDI tools and digital standard cell library in 0.35-micron AMS design Kit.
- Electronic simulation performed using NC-Sim to verify the behavioral description of the digital logic implemented.
- Electrical simulations were also performed on the digital designs.
- The simulation results are as expected with out any issues.

Future Work

- Enhance the current SDC (Synopsys Design Constraints) file.
- The configuration and readout electronics digital design need to be binded with other analog circuits in the chip.
- Chip level simulations including the parasitic extraction still need to be done.
- Final Layouts of the HINP5 chip need to be finished.
- Expected to send for fabrication in late 2019 submissions to MOSIS.

Queries?

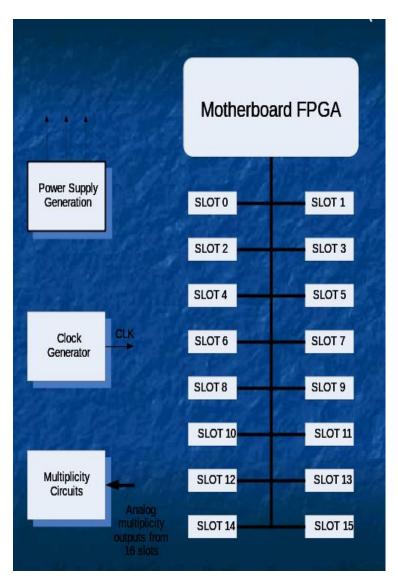


Fig.5 Block Diagram of the Motherboard

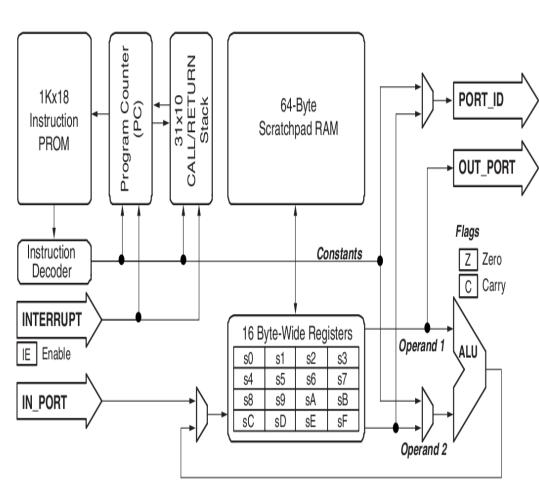


Fig.6 An 8-bit Pico blaze embedded microcontroller in FPGA.

Shadow Register

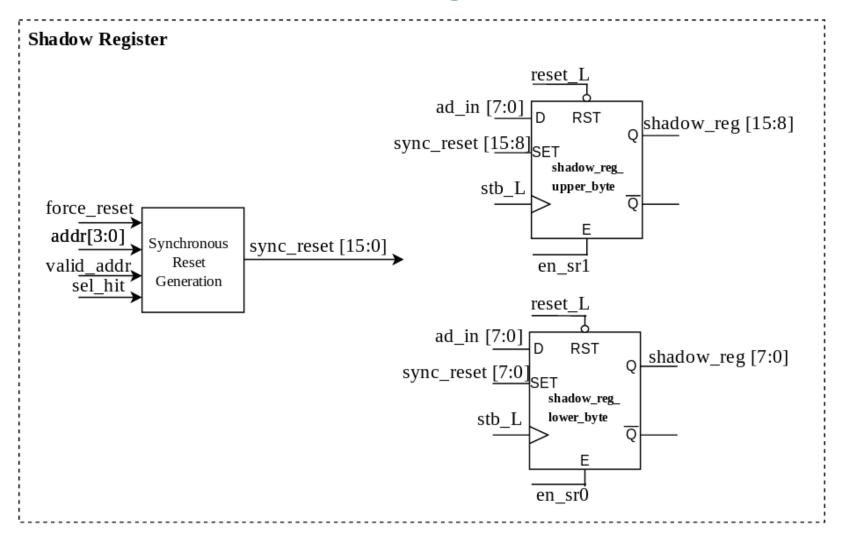


Fig. 10 Shadow register in common channel

DAC Digital

Bit Position	Name	Function
0 1 2 3	DATA[0] DATA[1] DATA[2] DATA[3]	5-bit value that sets the threshold for the DAC at what level cfd fires
5	DATA[4] DATA[5]	This bit sets the polarity of the DAC 0: Positive Polarity 1: Negative Polarity
6	LOCAL_EN A	0: Disables the signal channel locally1: Enables the signal channel locally
7	UNUSED	UNUSED

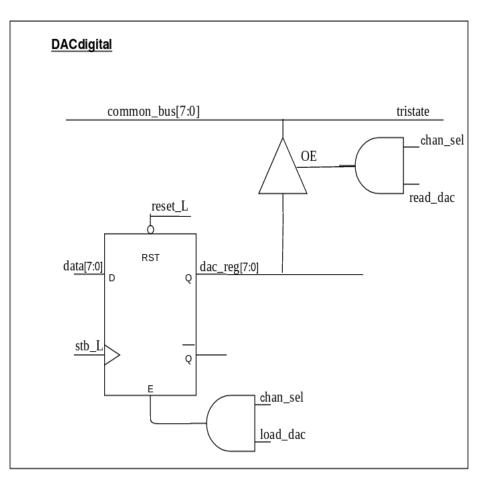


Fig.13 DAC digital circuit in signal channel